

FIT3162 Team 23

Project Final Report

Word Count: 9725
(Not including cover, headers, images, code, etc)

Project 8: KanbanX - An improved tool for Project Management and task allocation

Team Members

Marcus Facchino 30604176

Matthew Zupan 25122533

Stephanie Tjin 31580025

Jiangye Song 31186408

Table of Contents

1.0 Introduction .. 1

2.0 Project Background ... 3

2.1 Background ... 3

2.2 Contemporary Digital Project Management Tools .. 5

2.3 Study 1 - Assessing the Benefits and Challenges of Kanban in Software Engineering:
A Structured Synthesis Study .. 6

2.4 Study 2 - Examining the Impact of Kanban in Software Project Work: An Empirical
Case Study Investigation ... 7

2.5 Concluding Remarks ... 8

3.0 Outcomes .. 9

3.1 What has been implemented ... 9

Sign Up, Sign in and Sign out: ... 9

Board .. 9

Plan ... 10

History ... 10

Ticket... 10

3.2 Results achieved/product delivered ... 10

Sign Up, Sign in and Sign out .. 10

Board .. 11

Plan ... 11

History ... 11

Ticket... 12

3.3 How are requirements met .. 12

3.4 Justification of decisions made .. 13

Time and Skill .. 13

Design Complexity... 14

User Convenience ... 14

3.5 Limitations of project outcomes ... 15

3.6 Possible improvements and future works .. 16

4.0 Methodology ... 17

4.1 Design ... 17

Initial Proposal ... 17

Final Design And Deviation From The Proposal .. 19

4.2 Implementation .. 20

Task Management ... 20

Software Stack .. 20

5.0 Software Deliverables .. 21

5.1 Deliverables .. 22

Software .. 22

User Guides .. 22

Landing Page .. 23

Sign Up and Sign In ... 23

Board Page.. 24

Plan Page .. 25

History Page .. 25

Expanded Ticket Page ... 26

Testing Report ... 26

5.2 Software Qualities ... 27

Robustness ... 27

Security ... 28

Usability ... 28

Scalability .. 30

Documentation and Maintainability .. 30

6.0 Critical Discussion ... 32

6.1 Functional Requirements ... 32

6.2 Non functional Requirements .. 32

6.3 Analysis Of Project Outcome ... 33

6.4 Changes .. 33

7.0 Conclusion .. 34

8.0 Appendix ... 36

a. User Guide Contents ... 36

b. Code Sample .. 38

c. Attacks .. 45

9.0 References .. 46

1

1.0 Introduction

This Final Project Report written by Team 23 consisting of Jiangye Song, Stephanie

Tjinn, Marcus Facchino and Matthew Zupan involves the discussion of our projects

successes and shortcomings within the following five main topic areas being:

The Project Background in Section 2.0. Here we introduce our project (project 8),

which has been to produce a Kanban Web Application named KanbanX with the

goal to demonstrate an improvement upon existing Kanban applications. We explain

the rationale for choosing this project and a background in order to provide context to

the improvements demonstrated. This section involves a literature review covering

academic materials in relation to the Kanban ideology, Agile project management

methodology and its application.

Outcomes discussed in Section 3.0 outline the features which have been

implemented in the current state of the project with a discussion as to how the

requirements of this project have been met and extended upon in order to consider

the result of the project a success. We justify our design choices and rationale from

the perspective of both the development team and the end user, and provide

consideration to the limitations of the project which allow us to come to a greater

understanding of the future actions and implementations that would lead to a more

complete and desirable outcome.

Methodology is identified and discussed in Section 4.0, where we divide this

discussion into both the methodological principles adhered to throughout, as well as

the physical process of design itself (the implementation). The latter refers to the

‘what’, being the tools used and a description of their purpose. We compare in this

section the differences between the initial project proposal and the current outcome

in correspondence to our previously (last semester) identified user acceptance

criteria.

2

Software Deliverables are covered in Section 5.0. Here we include not only the

software itself and summarily state how it is used, but a detail of the supporting

documents such as the User Testing Guides (User and Technical), as well as the

Testing report which are necessary in order to provide a more complete package for

the end user. Deliverables themselves possess certain qualities, of which software

qualities are most important which are: robustness, security, usability, scalability,

documentation and maintenance. We discuss how our software possesses these

qualities and identify what may be necessary to satisfy these to a greater level.

The last main section is the Critical Discussion in section 6.0. Here we derive as a

brief extension to contents of previous sections, a discussion of what changes are

necessary (especially with respect to tooling, implementation methodology) that

would facilitate a better outcome based on the functional and nonfunctional

requirements brought forth as a revision from our initial proposal. Here we seek to

provide those extra considerations not covered in previous sections.

Finally, we conclude our report with a summary of the main topics and important

discussions identified. We provide additional materials in the Appendix (such as a

required code example and the explanation of how this satisfies project outcomes),

along with a tailing set of references to any external materials cited for the purpose

of discussion and reflection upon our work.

3

2.0 Project Background

2.1 Background

Kanban boards, derived from the Japanese term "kanban" meaning signboard, are a

potent tool for project management. Originally employed in manufacturing, this

concept has found its way into software development and various other industries. A

fundamental board consists of columns populated with task tickets, with each column

representing different states or processes. These tickets act as regulators,

controlling the flow between various states on the board. Kanban boards serve as

visual aids that facilitate the visualisation of workflows, impose limits on work in

progress (WIP) at each state, and gauge cycle time to boost productivity. The

principles of Kanban, rooted in lean and agile methodologies, have attracted

attention as a potential approach to improving project management and productivity.

In the literature review conducted last semester, we delve into the guiding principles

of Kanban as outlined by Anderson (2010), which encompass:

1. Visualising Workflow: The central tool for visualising and coordinating teamwork is

the Kanban board. This board is composed of columns representing various stages

of activities, such as "To-Do," "Doing," and "Done," with cards representing the

features or tasks currently under development.

2. Limiting Work in Progress: The effective management and limitation of work in

progress (WIP) is vital. Establishing mechanisms to control and signal when a new

task can be introduced into the workflow is crucial.

3. Measuring and Managing Flow: Monitoring the Kanban process entails utilising

various statistics and diagrams, including measuring cycle/lead time, tracking

queue size, and utilising cumulative flow diagrams to gain insights into work

progress.

4. Explicit Process Policies: Clear process policies are essential for ensuring a smooth

flow, as they define the conditions necessary for the pull system to function

effectively. These policies address aspects such as task assignment, activity

allocation to developers, and the transition of work items from one state to another.

5. Utilising Models for Improvement: Kanban advocates the use of models to identify

areas for improvement. Three suggested models include the Theory of Constraints,

4

a subset of Lean Thinking that identifies wasteful activities as economic costs, and

other variants that focus on understanding and reducing variability in the workflow.

To facilitate practitioners in comprehending and analysing the advantages and

challenges of implementing Kanban in software projects, several research studies

have probed its impact. This literature review offers a synthesis of two crucial

research articles focusing on the application of Kanban in software engineering and

its associated benefits and challenges.

5

2.2 Contemporary Digital Project Management Tools

Various project management tools with a digital approach exist to aid teams in

organising and collaborating efficiently. Notable online tools, such as Trello,

ProofHub, Asana, and Jira, provide features for task management, collaboration,

task assignment, progress tracking, attaching files to tasks, setting due dates, and

facilitating team communication (Pandey, A. 2020). These tools exhibit differences,

with Trello emphasising simplicity and workflow visualisation, while ProofHub offers

additional task views, such as the Gantt chart (Pandey, A. 2020). Jira, on the other

hand, is tailored specifically for software teams, featuring elements designed for

software development and automatic reporting (Pandey, A. 2020).

6

2.3 Study 1 - Assessing the Benefits and Challenges of

Kanban in Software Engineering: A Structured Synthesis

Study

Conducted by Paulo Sérgio Medeiros dos Santos, Alessandro Caetano Beltrão,

Bruno Pedraça de Souza, and Guilherme Horta Travassos (2018), this study

employed a structured synthesis approach to consolidate evidence from published

primary studies concerning the benefits and challenges associated with

implementing Kanban in software engineering. The research aimed to pinpoint the

actual advantages and hurdles tied to Kanban. By analysing 20 chosen primary

studies, the authors identified significant benefits, including:

1. Enhanced Work Visibility: The Kanban board offers superior clarity on the

development process and indicates which developer is working on each task.

2. Control over Project Activities and Tasks: The WIP limit directs the software

team's efforts, preventing them from taking on too many parallel tasks and

ensuring that they focus on value-delivering tasks.

3. Enhanced Flow of Work: Kanban provides deeper insights into team activities,

thereby improving feedback loops and highlighting resource constraints.

4. Reduced Time-to-Market: While the impact of the Kanban board on software

product release time is somewhat weak, it does contribute to more efficient

product production.

These advantages extend to niche areas like 'portfolio management' and educational

applications. However, an organisation's 'culture', 'management expertise', and

'supportive practices' are crucial for realising these improvements.

Additionally, the authors posit that while Kanban has the potential to enhance 'team

cohesion' based on the observations, its success in doing so hinges on the team's

willingness to embrace the mindset shifts associated with Lean principles and

Kanban methods. This implies that for Kanban to positively influence social

dynamics, there must be a foundational openness to change and collaborative work

within the team.

7

2.4 Study 2 - Examining the Impact of Kanban in Software

Project Work: An Empirical Case Study Investigation

Authored by Marko Ikonen, Elena Pirinen, Fabian Fagerholm, Petri Kettunen, and

Pekka Abrahamsson (2011), this empirical case study investigates the influence of

Kanban on software project work in a Software Factory research and education

setting.

The authors state that some common project risks in software development utilising

Kanban mitigates, such as those associated with scheduling and scope. Kanban's

method of joint goal-setting by customers and developers, along with its flow-

focused, incremental task structure, enables precise, data-driven scheduling and

budgeting. Lean's "defer commitment" principle guides decision-making when most

informed, reducing uncertainty. This flexible system adapts to changing

requirements, streamlines decision-making, and prevents unnecessary features,

thus improving requirement management control.

The study relied on empirical data gathered during a case study of a team employing

a Kanban board for project management. The research methods encompassed

video and direct observations, one-hour thematic interviews, diary records of

observations, and taped interviews. The findings revealed that Kanban facilitated

problem-solving by illuminating workflow bottlenecks, promoted informal and open

communication, and encouraged shorter feedback cycles through task

decomposition. The study also highlighted the intuitive nature of Kanban and its

ability to empower developers in task selection.

They also emphasise that the more Kanban is scrutinised, the clearer its adaptability

and potential benefits become, pointing to a rich field of research yet to be fully

explored and utilised.

8

2.5 Concluding Remarks

By amalgamating insights from these two studies, it becomes evident that Kanban

holds significant potential for enhancing software engineering, with benefits including

improved work visibility, better control over project activities, enhanced workflow, and

reduced time-to-market. Nonetheless, the influence of organisational culture during

Kanban implementation cannot be underestimated. These studies provide valuable

guidance to practitioners considering the adoption of Kanban in their software

projects, enabling them to make informed decisions and leverage the method's

advantages while addressing challenges effectively.

9

3.0 Outcomes

Within the section of project outcomes we will discuss the features that have been

implemented along with the results achieved in the product. We shall discuss how

project requirements have been met and justify our design choices due to the

decisions made throughout. We will further discuss the limitations of our work and

extend upon this by considering the possible improvements that could be applied in

future if this project were to be given further attention beyond the scope of the

semester. We save further discussion of meeting acceptance criteria in Section 6.0:

Critical Discussion.

3.1 What has been implemented

Over the course of the semester, we have implemented the following features to our

project. A more thorough and complete guide of the KanbanX application contents

exists in our previous report “User Guides” (note that usage will be covered in

Section 5.0: Software Deliverables), the core contents of which are provided in

Section 8.0: Appendix - User Guide Contents. So we will only summarise what has

been implemented at a high level here.

Sign Up, Sign in and Sign out:

● Sign up, if you do not already have an existing account and would like to

become a user of the application. This involves creating a username and

password which registers the account to the application.

● Sign in, if you already have an existing account and would like to login. This

involves entering in registered account details to access the application

contents.

● Log out of the application by clicking on the user profile icon in the top right

corner of the navigation panel and selecting ‘log out’.

Board

The board page provides multiple features to the end user, these are:

● The ability to view a project Kanban Board and create and move tickets on

this board. Board columns are titled ‘TODO’, ‘PROGRESS’, ‘COMPLETED’

and ‘ACCEPTED’. The ticket ID, title and description are visible.

● Click on ticket ID to go to an expanded view of the ticket.

● The ability to create a new project through the projects dropdown menu, as

well as select the project board to view.

10

Plan

● The plan section allows for viewing of information related to the past, present

and future sprints in a project. Extending upon this, a new sprint can be

created and the current sprint can be completed. Sprints are short bursts of

work on specific tasks that can be repeated throughout the project lifecycle.

● Ticket creation for the current sprint can be performed in the plan section for

the currently selected project, which is then added to the project board.

History

● The ability to view a project boards’ history is available in the history section.

A date-time selector can be used to view the state of the board at the chosen

date-time. The projects’ Kanban board will then be displayed statically (ie,

non-interactive).

Ticket

● Tickets refer to Kanban cards in this application. These tickets while present

on a given project board, can be clicked on to provide an expanded view

which presents more detailed information on the ticket itself, such as the user

assigned to work on the ticket, the project and sprint it belongs to, the ability

to comment on tickets and read ticket comments, view and edit its description,

as well as to change its state on the board. Changes can be saved within this

expanded view.

3.2 Results achieved/product delivered

The results of the currently delivered product follow from the implementations

outlined previously. Users are able to sign up and log in to the application, create

and interact with projects, sprints and Kanban cards that can be moved across the

Kanban board based on the status of any defined task. With the ability to view board

history and leave comments on tickets, progress and decisions made can be

monitored. We will outline the implications of each major feature next.

Sign Up, Sign in and Sign out

Sign up and login allow for users to interact with the application uniquely, that is, to

have a distinct profile that cannot be accessed by any third party. This provides a

level of security, such that unwanted users cannot view or modify the contents of a

project nor access sensitive data/information.

11

Logout prevents those who have left their computer etc running from having others

enter the application and modify/view any information that they should not have

permission to do.

Board

The board page provides a high level overview of the current state of a project, such

that the tickets within can all be viewed to understand which tasks are in progress,

need yet to be started, or have come to completion or require review. The columnar

representation of the Kanban board provides a simple and easily readable temporal

display of the project state. The ease of interaction with the board by dragging cards

across columns removes unnecessary complexity of manipulating this high level

overview. Furthermore, with project and sprint information clearly displayed above

the board, there is little confusion as to what the board information is referring

to/represents. Relevant information and features to a project should be easily

accessible from the board page in order to avoid the need to traverse across multiple

pages in order to perform a project specific action, hence we include the ability to

create and select projects, as well as create tickets within the board page to keep

this functionality cohesive.

Plan

The plan page introduces a bit more complexity as this delves into project specifics.

It is not regarded as the high level overview, but allows for manipulation of sprint

activities. Given a project may consist of one or more sprints, we can plan for future

sprints, creating and assigning tickets as necessary into a backlog such that when

the current sprint has ended, the new tasks are present in the next sprint. By

selecting a past sprint, a tabular summary of the tickets on the project board are

presented where the state of the board at the end of that sprint is captured. The

consequence is that it is then clear what has remained unfinished and what is

required to be ported over to the next sprint. This captures the essence of planning,

as we can see what follows from the previous and create what is necessary in

response.

History

Board history provides a higher degree of temporal context beyond the tabular

summary of ‘end of sprint’ information, because it allows a more fine grained view of

a selected project board based on exact date-time specifications. A specific ticket or

collection of tickets can be seen to be stagnant when present in the same board

location over some duration. The direct implication being that either the task is

12

complex and requires more time to complete, or an assignee is stagnating in their

work. Notably, viewing history allows one to see at what time a ticket has moved

state or to be able to reference the time that progress for the ticket commenced or

completed for reporting reasons. The date-time selection feature, allowing for

calendar date selection and its accompanying clock selection sub-feature allow for a

more flexible granularity in the selection process when varying levels of time-based

specificity are required upon review. However, it should be noted that the board state

is not represented as a ‘snapshot’ at every minute interval, given that the amount of

data required to store this grows largely. Changes are stored only when they occur,

therefore the history presents the most recent version of the board at or prior to the

selected time.

Ticket

The expanded ticket page provides the user extra support and access to ticket-

specific information. Having a single user assigned to the ticket prevents duplication

of work for that ticket and the ability to view all ticket information in a single location

and modify that information allows for task specific consistency. An editable

description allows errors or misinterpretations regarding the nature of the task to be

fixed or elaborated on, and the ordered listing of comments provide not only

questions and updates related to the ticket, but the time-based context of this

information. Given that we can also change and save information, we do not need to

go back to the board to move the ticket, thus giving us greater control without having

to jump back and forth between board and ticket views.

3.3 How are requirements met

The project brief outlined four main requirements for the Kanban project, these

being:

1. The ability to view history of the Kanboard, ie, allow users to view how the

board was at various times earlier (eg, 1 or 2 weeks earlier).

2. The ability to pre-commit tasks, ie tasks that would be undertaken in the

future.

3. The ability to view/monitor each team member’s percentage contribution to

the whole project, and better allocate tasks to team members.

4. Access to improved collaboration and communication between team

members.

These requirements represent an ‘improvement’ that a Kanban application can have.

However, this set of requirements is not comprehensive, thus other improvements

13

may be considered. For this reason, we have replaced requirement 3 with a different

feature, being:

3. The ability to break down projects into smaller units (sprints).

We have met the requirements 1,2,3 and 4 in the following way:

1. The board history page allows for date-time selection of a selected project,

providing a view of the state of that kanban board at the selected time.

2. The plan page allows for ticket creation, where the backlog is available for a

future sprint.

3. Sprints can be created and completed in the plan page, the board page

displays the kanban board for the current sprint on the currently selected

project. This board is interactive.

4. Tickets in the expanded view have the comments feature, displaying all

comments on the ticket which can be read and responded to.

These requirements occur in conjunction with the implicit requirement that we

provide for a regular functioning Kanban application with the previously outlined

being integrated within. Not just separate ‘improvement’ components, but instead

provided within a contextual setting. Furthermore, it is implicit that the product has

been tested and working at least on a basic level, of which we have somewhat

achieved (discussed further in the Limitations subsection).

3.4 Justification of decisions made

Implementation decisions and design alterations occurred for three main reasons:

1. Time and skill limitations - Team members were required to maintain a

work/life and study balance across multiple units while satisfying project

outcomes. Additionally, team member experience in relation to this project

varied.

2. Design Complexity - Considerations to the need for restructuring the code and

interactions across modules.

3. User Convenience - How the end user would receive, interact with and learn

to utilise the applications functionality.

Time and Skill

The time available for members to work on the project was limited and due to the

lack of experience, we were unable to implement more advanced functionality such

14

as tagging users in comments and the display of user statistics in a graph on a

separate page. So we had to keep design simple and allow for basic functionality

while showing some improvements as described before. Having too many features

would have significantly reduced the quality of each deliverable, with insufficient time

spent to achieve a working standard beyond a prototype.

We had omitted the ability to rename Kanban board columns as this would require a

more advanced script to then run through the database and change all instances

throughout to reflect the renaming, with possible data inconsistencies. Figuring out

how to make alterations to the database to extend upon existing features (such as

adding an estimate of task difficulty as user work scoring method) already posed a

challenge, so we omitted this functionality as well.

Design Complexity

Maintaining a modular design, such as modules for the expanded ticket, board,

board history, the plan page and such kept the development of such items within

their own scope. This helped reduce the complexity of design by allowing items to be

developed in their own location and reduce the amount of coupling needed between

modules. Having a design that induces too many dependencies and inter-related

items increases the debugging time due to one change somewhere affecting many

other items elsewhere. We also wanted the project to be scalable, thus packaging

together related modules was necessary. In the backend for example, we keep

controllers together, fetch requests etc. We also separated our frontend and

backend, with vscode using javascript and tailwind css as the development

environment for the front end such that we can style and manipulate data on this

side once transferred from the backend logic and controllers, which themselves

provide the servicing and structure of the application. The backend utilised IntelliJ

and java for this purpose as it integrates well with the data related functionality.

User Convenience

User convenience was a significant driving factor with regard to the design decisions

made. We chose a web based application for accessibility, requiring sign up and

login to commence use and operation, this along with the ability to log out was

intended as a layer of security. User technical experience must also be considered,

so for that reason breaking up core elements of functionality such as project

creation, the Kanban board overview, expanded ticket information, history and

planning/sprint manipulation allowed for relevant information to be located in mostly

one place. We included a navigation panel at the top with the same layout across all

15

of the above mentioned pages to ensure consistency in design and reduce the need

for learning.

Using an interactive Kanban board provides immediate visual feedback of the

board's state, the ability to edit ticket descriptions within the expanded ticket reduces

the propagation of errors and the separation of the board history page from the

current board reduces confusion as to what is being viewed. We wanted our board

history selection process to be symbolically conveyed, and so the calendar date and

clock selection widget made it clear what the selection represents.

While the plan page involved more project specific information, we wanted to ensure

that components appeared together but were clearly distinct from one another.

Which is why we used a tabular format of sprint information at the bottom of the

page, with sprint manipulation and ticket creation in a separate panel above.

3.5 Limitations of project outcomes

The current limitations of the project depend on the disparity between expected and

projected functionality. However, from the basic perspective, we have the following

limitations:

● The inability to assign more users to the project, including the inability to

assign users to tickets and thus to re-assign users.

● The inability to reset or recover account information if it is lost/forgotten.

● Assigning tickets to different sprints is not functional.

● Inability to assign a work estimate (weighting to the ticket), such that this

weighted contribution by assigned users can be compared and presented

graphically according to an average of all other users working on the project.

● Inability to rename Kanban board columns to better suit the project nuances.

● Inability to be tagged in comments and pinged to be notified of this.

A more projective set of limitations include:

● The inability to schedule tasks of a recurring nature, that is to automate

assignment to future sprints. This includes the limitation that sprint starts and

completions are actioned manually.

● Advanced ticket creation features are not implemented, such as assigning a

type to the ticket (for example, ‘feature’, ‘prototype’, ‘test’ etc).

● Breakdown of projects into ‘features’ (sub-projects), which themselves contain

sprints.

● Inability to delete tickets or reverse/revert changes, such as reversing the

action to complete a current sprint if done by accident.

16

● Inability to personalise account details/information to a level beyond the sign

up functionality.

3.6 Possible improvements and future works

Necessitated by the current limitations of the application we should consider

addressing each of the previous as an improvement upon our current work. We also

consider a few other ideas that would be interesting:

● The ability to block tickets from being started until the dependence is marked

as completed. The removal of this block is automated.

● Restrict access to certain actions such as moving tickets that do not belong to

a user, unless their access level is higher than that of a developer. This can

involve the ability to grant and revoke access.

● Include a leaderboard which displays developers who have completed the

most work.

● Include tooltips when hovering over buttons to provide hints on their

functionality.

● Include a help page in the application which addresses main usage questions

and links to a complete user guide.

● Colour theme customization for users with visual impairments, so that

features are easily distinguishable.

17

4.0 Methodology

In this section on methodology, we focus on two main aspects of the project. These

are:

1. The aspect of design, which includes a brief of the initial proposal and moves

on to a discussion of the deviation and impact of this between this initial and

current design.

2. The Methodology (principles) adhered to during implementation of the project

in relation to task management, and the physical methodology in regards to

design itself, tooling/software used and how this process took place.

Our intention here is to more so convey how we arrived at the current state of the

project, as we will cover what the project looks like in Section 5.0: Software

Deliverables.

4.1 Design

Initial Proposal

The initial design from semester 1 was a listing of user acceptance criteria rather

than a physical design itself, and for this reason we list these criteria here:

● An acceptable product will run on any pc, laptop or tablet device with an

internet connection able to connect to the application webpage. Given that a

website is being developed, access is independent of the operating system of

the end users’ device.

● A login screen that allows the user to create an account with a username and

password if their account does not already exist, and to be able to enter in the

user login details to access the rest of the application functionality if an

account does already exist. Users who close the webpage are logged out by

default.

● From this point onwards, the application must establish a permissions

hierarchy such that additional project security is implemented, allowing for

user access levels such as:

● Administrator, with the greatest level of access, to be able to create and

delete projects, features, epics and tickets as well as add users to such

projects and assign their access levels. The administrator is thus considered

as an owner of generated project and user data.

18

● Project leader, with unrestricted access the same as an administrator has, but

only within their assigned projects, project leaders can accept users into

projects but only assign developer level access and no level higher.

● Developer, with the least access. Developers cannot add or remove tickets,

assign users to tickets or add users to projects, nor grant permissions. They

are unable to view any project outside their own assignments. However they

are able to comment on all tickets and work on their assigned tickets as well

as view board and user metrics.

● A menu bar which contains the menu options to change pages/view from a

selection of projects in the project option, to access the historical board

selection page from the board history option and to access the user metrics

page from the user metrics option. Project selection also involves a nested

subset of selection options to select the relevant epic and feature within a

project.

● The ability to view the state of a project board given by a time specification,

that is, at a specified time, the tickets present on the board at that time are

displayed in a separate historical view in the columns they resided on at that

time.

● The ability to assign to each ticket a value which weighs how many units of

work the ticket is worth.

● The ability to display how much work a chosen user has completed in

comparison to all the tasks during a given time interval based on the weight of

the tickets in this interval. This includes the ability to display rankings of users

against other users based on how much work was completed, say in the form

of a pie chart or bar graph.

● The ability to move cards across the columns of the Kanboard for users who

are working on that given card/ticket, or in the case of users with project

leader or administrative permissions to do so as well. Tickets that have been

placed in the done column will show up in user metrics searches as the user

having completed the work.

● The ability to comment on tickets for all users assigned to a given project for

which that ticket is located within. This includes notifying an user who is

tagged in a comment with the ‘@<username>’ tag.

● The ability for users to read comments in a separate popup near the ticket

when the comments option on the ticket is clicked on, the user is defaulted to

their least recently unread comment.

● A database for which to hold all related data and relations between data for

storage and processing, of board view and metrics as well as permissions,

assignments, projects, epics, features, tickets, comments and login data.

19

● The ability for a ticket to display the derived attribute ‘days since creation’ in

days to easily determine how long the ticket has been active for.

● The ability for project leaders and administrators to pre schedule tickets in

project boards to begin at a given date, with the option of allowing recurring

pre scheduling intervals.

● Periodic purging of tickets from the done column in a project board to avoid

excess build up of tickets in this column, with the option to purge based on a

selected time period (multiples of one week).

● The ability for only one user to work on a ticket.

● Product testing by the team to ensure reliability, accuracy, security, quality

and that acceptance requirements have been met.

Final Design And Deviation From The Proposal

The final design implementing the features identified from Section 3: Outcomes

deviates from the above in the following ways:

● The product is a web application but requires Windows or Mac running our

software stack as it has not been floated as a standalone website. This

reduces accessibility.

● The permissions hierarchy does not exist, which means that projects are

viewable and interactive to any user. A reduction in information sensitive

security.

● The navigation/menu bar does not contain user metrics, so user workload is

not tracked, reducing user workload analysis ability.

● Comments on tickets do not involve username tags, so there is no explicit

notification to alert relevant users of potentially important information, such

information can be missed.

● Ticket creation time is not displayed, although it does have an entry in the

database. While board history can determine this metric, it could be made

more accessible, say viewable directly on the board or in the expanded ticket

page for simpler analysis.

● Purging of tickets can be done manually by ending a current sprint, rather

than the automated periodic purge. An automation feature is convenient, the

manual option does allow for greater flexible pacing control however.

20

4.2 Implementation

Task Management

Task management utilised Trello, an online Kanban board tool to manage tasks with

team members assigning themselves to tasks and moving them across the Kanban

board based on completion. The Kanban methodology considered by us to be

encompassed within the Agile methodology allowed for tasks to be re-assigned if a

member had excessive difficulty, or to move a task back from the completed column

to ‘todo’ based on any future extensions that were deemed appropriate, such as

extending upon the information present in ‘expand ticket to view’.

While the user acceptance criteria is considered highly predictable, such that a

waterfall methodology can be used (prototype, develop, test), we still required the

flexibility of Kanban for greater task tracking, and an organised presentation of all

tasks at hand. Movement to the progress column determined when a task had been

started, and movement to ‘review’ indicated that it was time for another member to

pull the separate branch in which this task took place, test that branch and then

provide comments and feedback based on the result. A successful review would

then see to the merging of the task and any changes with the master branch on Git.

This process/methodology remained the same throughout the project lifecycle.

Software Stack

21

We made use of React Typescript as our framework and our language to build our

client. React is a popular framework which uses Javascript and Typescript. We

chose React as it is a popular modern framework used in the industry so future

engineers who work on this will not have trouble finding resources to troubleshoot

errors. We used typescript to ensure we have type safety in our language and errors

that we don't propagate stupid type errors to the user and keep our solution robust.

To accompany our React we make use of popular libraries such as Redux which is a

local data store that allows us to store data and access it across our application

similar to a local database. WE use tailwind CSS, Material UI and SASS to build and

style our UI components to a consistent standard. ES lint is used frequently to keep

our typescript files to a specific code standard and set custom rules such as ensuring

we handle null variables and not use the ‘!’ operator which tells our compiler this is

not a null value which is bad practice. Lastly for our client we use Yarn package

manager to install, add and remove packages.

Our Backend uses Java, a popular programming language that can be run on most

machines. We chose to use Springboot, a popular and mature API server

framework. Springboot was chosen due to its heavy presence in the industry and its

wide adoption also means any future work done on expanding the solution will mean

lots of documentation online.

For our infrastructure we use linux as our development OS using any flavour. We

use docker to run our database locally alongside docker will be chosen to package

our solution and deploy it.

For our development tools we made heavy use of VS Code for our Non Java

development and for our Java Development we made heavy use of Intellij. To build

our Java code we use MAVEN similarly to yarn; it provides us with an interface to

add and remove packages to help development.

We used postgresql for our database services. Postgresql provides a strongly typed

system that ensures our tables and relations contain no mismatches on deployment.

We used trello to keep track of tickets and activities so we had oversight into what

other members of the group were doing. Github was used for our version control to

help us work separately and merge and review code.

5.0 Software Deliverables

The software deliverables do not come standalone as a set of source code/packaged

software, as it is required that software come with a manual for usage, in our case a

User Guide, which additionally includes a Technical Guide for installing, running and

22

even being able to begin developing with the code. The software deliverable itself

also inherently consists of its own internal software qualities, being: robustness,

security, usability, scalability and documentation/maintainability. Here we introduce

the previous and provide a sample of our source code in the Appendix under the title

‘Code Sample’ to demonstrate how software requirements are being fulfilled.

5.1 Deliverables

Software

We will provide only source code and not a packaged version of the program to

deploy. We will provide a website alongside documentation inside of our README in

our source code on how to start up the solution. We will deliver an API server which

will handle requests sent by our Kanban Board website. Our website is a Java

Server that takes requests. Our Client Interface is a react website that can be started

and hosted which interacts with our backend. We also provide a database docker

image with an accompanying script to start and initialise the database which our

Java backend talks to.

User Guides

The user guides have been presented as a report written by the team and uploaded

to Moodle as part of the semester 2 assessment. Furthermore it is available on

google docs but with restricted access to those who are given explicit permission to

view and/or edit this folder. The Moodle upload is considered the most important

here as it is readily accessible to the teaching team who is considered our ‘project

sponsor’ given that we have no other external party that this project affects.

The user guide is a thorough documentation of all of the software functionality and

comes complete with contents and screenshots of all processes and features. These

are documented in detail, with explanations of where items are located, their exact

functionality and how to read and use them. An extension to this guide is the

Technical Guide, which covers the main aspects of software installation. This

contains the contents of the teams’ Github page explaining what software is used

along with what commands are used to proceed with the installation process and

how to access the collaborative source code from Github. Here we assume a

Windows machine is to be used. The main three topics covered are Git Branching,

setting up the development environment and building and running (the server and

website). We provide the contents of this in the Appendix under the title “Technical

Guide Contents”.

23

We will cover usage here to a lesser extent than present in the User Guides:

Landing Page

Here we arrive at the main landing page when entering the website, where the

options to sign up or sign in are present.

Sign Up and Sign In

To sign up, enter a username and password, then re-enter the password to ensure

correctness and click sign up, then the login option becomes valid, alternatively if we

have login details already, we can directly login by entering our username and

password and click login.

24

Board Page

The board page offers the ability to select or create projects by clicking the top left

project dropdown, the create new ticket function here is erroneous thus we should

only create tickets for a project in the Plan page (present in navigational panel).

Tickets appearing on the Kanban board in this board page are draggable and

clickable to enter an expanded view.

25

Plan Page

Tickets can be successfully created here, sprints can be selected for view in the

table, presenting a summary of tickets in the selected spring. Sprints can also be

created and completed to enter the new sprint.

History Page

The bottom panel allows for one to choose the date and time for which the view of

this board is updated to reflect the state at that selected date-time. This is a static

display. The date-time selector has a calendar-clock format as such:

26

Expanded Ticket Page

This page includes more detailed ticket information (description, comments, user,

sprint, board column) and is editable by clicking save changes after a change is

made. Posted comments are automatically saved.

Testing Report

The testing report is available within the same Moodle upload as the User Guides

and is a rudimentary report detailing our testing procedure. As an outline of this

process we have employed the following testing methodologies: Whitebox Testing,

Blackbox Testing, Integration Testing. This comes with a discussion of the testing

approach and limitations.

● Whitebox testing involves writing unit tests in our Java backend using the

Springboot testing framework.

27

● Blackbox Testing involves manually testing the application by interacting with

the site after/during the implementation of a feature. For example, moving a

ticket across the Kanban board to check for correct behaviour.

● Integration Testing involves testing the interaction of multiple implemented

features together as a whole. For example, we can test ticket creation on the

plan page, movement on the board page and then re-movement from the

expanded ticket view page to check that changes are stored correctly when

displayed on the site in comparison to the actions we have taken.

We discuss in our test report how unit testing and integration tests are run. We have

laid our stages and steps on how they are conducted and run in our application. Our

unit tests are run with the maven test command. Which includes our whitebox box

behaviour. Our blackbox testing is a set of steps around the feature / parts of the

program we edited or made changes to, to test that our changes did not affect other

parts of our site or had unintended side effects. Finally our integration tests are done

by hand and by following steps. More detail is mentioned in the Testing guide.

5.2 Software Qualities

Here we refer to and discuss the properties of which our software deliverable

possesses both in relation to current and future contexts if we were to continue

development.

Robustness

Robustness being the ability to cope with errors during execution, we have not

detected any fatal error such as a crash when testing and using the platform.

Largely, any error that occurs results in a no-action event. With specific reference to

the saving of changes such as assigning a ticket to another sprint within the

expanded ticket page simply resulting in no action. The other example is that of a

disappearing action, such as the creation of a ticket from the board page, in which

the ticket disappears from view after the board page is re-accessed. This is because

it is not saved to the back end here. We outline these issues in the user guides and

discussion of limitations.

In terms of inputs to ticket descriptions, exceeding the maximum description length

disallows the user from committing the description, which is an intended action.

Posting large comments allows the comment section to be scrollable such that the

entirety can be read, and providing incorrect login information provides immediate

feedback to the user that this information is incorrect without causing any non

intended error. Robustness within the development environment is ensured through

28

use of Linting (ESLint) which visibly prevents the developer from further testing a

feature until the detected issue is resolved. This greatly reduces the likelihood of

coding errors persisting throughout the design.

Security

Security is enforced within the application through use of the login feature. However,

given there is no ability to recover account information if lost or forgotten does pose

an additional risk, that is the need to store retrieval information elsewhere external to

the application, which may potentially not be secure. Access to projects is also

restricted given only one user may interact with their project, which does reduce the

risk of others meddling with or accessing potentially sensitive information.

Furthermore, we have the logout feature such that when not in use, information

cannot be accessed after logging out. No consideration to injection attacks has been

given, nor a timeout feature to prevent rapid sequential brute force login attempts.

Such an attack can occur by first attempting to identify an existing user through brute

force feedback, then a brute force password guess, elaborated on in the Appendix

under the title “Attacks”.

Usability

From the perspective of User Experience (UX) design principles such as inclusivity

to those with visual impairments etc, we have not given consideration. From a

simplified design perspective, we have taken the initiative to provide the user guides,

as well as grouping similar features together (ticket information in expanded ticket,

board information in board, sprints and planning on the plan page, and board history

on the history page). We have taken the care not to excessively clutter these pages

such that there is no visual overload taking place, nor the need to learn a large deal

29

in order to begin using the application. Buttons label their functionality and

dropdowns list their contents directly.

From the perspective of manipulating the Kanban board, tickets are easily draggable

and the ticket ID’s come underlined in the well known and typical hyperlink fashion to

visually indicate that this is a clickable item, and that this performs an action.

We have considered from Norman's 7 Principles in Usability (William Lay, 2022) the

following:

● Discoverability: The ability to easily determine which action leads to the

intended result. We could have improved this through the use of tooltips, but

have attempted to increase discoverability by giving buttons a name, keeping

design simple and consistent (conceptual model) and providing the User

Guides.

● Affordances: The available/possible interactions relating an items’ properties

and the user's abilities. This has not been given much consideration, nor is it

clear exactly how to cater to this principle other than to make the Kanban

board look more like a board, and a Kanban card more like a ticket to derive

more of a physical meaning to this online version.

● Constraints: Limiting the space of possible actions to reduce errors. This

principle has not been given much consideration. Considerations for a future

version of this project may allow for this by limiting Kanban card movement

across columns (only allow movement by 1 to the right at a time) such that a

card cannot be immediately considered ‘Done’ right after it has begun

progress. Another useful function would be a prompt window ‘Do you want to

finish the current sprint?’ as an intermediate stage in case this is done

erroneously.

● Signifiers: Visual cues which indicate functionality. The board history date-

time selector is a signifier that improves understandability, as it looks exactly

as it's. intended functionality. The calendar to select date and the clock to

select time. We make use of the profile circle at the top right of the screen to

indicate that this item is related to actions corresponding to the user

themselves.

● Feedback: An effect that occurs after an action that provides information

about the current state. We implement feedback in the login and sign up page

where incorrect information produces a response in red text to inform the user

what issue has occurred. We also provide feedback on the Kanban board as

the Kanban card is immediately located on the moved board column. Drop

30

down menus display as their first entry the currently selected item (such as

the current project in the project selector).

● Conceptual Model: The mental map a user has of the application. We improve

this by placing navigation in the same place with simple tabs that label their

destination, grouping similar information together and not including too many

functions on the same page.

● Mappings: Keeping similar information together. We display ticket information

in a side panel together, group ticket comments together, board columns and

displayed tickets all in the one window and on the plan page, label the

columns in which the sprint information is displayed. The login and sign up

page follow a similar format to each other to improve this mapping as well as

the conceptual model.

Scalability

The code has been developed in a modular fashion, with board related items in the

‘board’ module, specific ticket related items in the expanded ticket module, planning

related items in the plan module, sign up and login in their own modules etc. Every

major feature which is sufficiently unique has its own module in the code which

allows it to be considered somewhat separate from the rest (with the exception of

dependencies, such as adding a new field to a ticket, meaning all functionality that

will require this new field must be found and changed). This means that adding a

new major feature can be achieved by creating a new module as a container for this

new functionality, which is scalable in nature. For smaller nuanced changes, a

greater amount of effort is required, by locating all dependent instances due to this

change. Thus this code deliverable is scalable to an extent before significant

restructuring is required. Restructuring would lean more towards the form of creating

an interface for each class of related modules which require communication to

external classes in order to reduce local complexity when adding functionality. The

use of standard templates for web page design (a standard colour dictionary module

as well) has assisted with keeping the design consistent, and more templates can be

added and called upon in future if necessary.

Documentation and Maintainability

With regards to documentation, we have produced the User Guides (User and

Technical) as well as the Testing Report. However documentation has also occurred

within Github given that each commit during development is staged and uploaded to

github, there is a clear development history for each branch. During the review

process, comments are annotated to the code and feedback provided. Each of these

comments when highlighted as an issue must be manually resolved. Thus from the

31

developer side, this version history provides a strong development context to assist

with future maintenance and works. The code itself contains a sparse set of inline

comments or docstrings describing functions/methods and their use, however

modules and functions are given a descriptive name indicative of their functionality to

make it apparent what they are designed to achieve.

From the user side, maintainability simply occurs through use of the application,

manually updating project boards, adding and moving tickets etc. There is no

external source of data that is required to be updated or merged in to replace any

current working data and a static version of the software can be used. From the

technical perspective, certain elements of the software stack may be deprecated in

future such that a snapshot of the database would need to be captured and

repopulated into the newer framework if a significant software change is required.

However there is currently no provision to do so as this would be a very long term

consideration.

32

6.0 Critical Discussion

This section discusses further the project outcome and whether the team believes

we have met the acceptance criteria for this to be considered a successful project or

not, as well as the reasons why/why not. Note that we have introduced the user

acceptance criteria in Section 4.0: Methodology under the subsection ‘Initial Design’

in order to highlight the deviations introduced over the course of the semester. Here

we also introduce the initially proposed functional and nonfunctional requirements.

6.1 Functional Requirements

1. The Kanboard web application should largely support an Agile methodology.

2. A web interface or application software with the ability to work collaboratively

is sufficient to satisfy the outcome of this project.

3. The ability to view historical states of the Kanboard during some specified

time period is necessary.

4. The ability to set goals in the future, showing ideal future states of the board

on a specific date.

5. The ability to see how big a task is, that is, the weight of a task relative to the

size of the project, alternatively, it is acceptable to consider weight relative to

a subset of a project, such as an epic or feature.

6. The ability to assign names to tasks.

7. The ability to add tasks to the backlog that depends on another to be done

before being able to add it to “Doing”. This is described as pre-committing,

scheduling tasks that may be common or recurring.

6.2 Non functional Requirements

1. The project sponsors are teaching staff for the FIT3161 unit and the use of

this Kanboard web application is intended to be a demonstration of the

principles taught in the FIT3161 unit, with intended use limited to this

demonstration. We do not expect a user base outside of this unit scope.

2. Rudimentary and basic product functionality as long as a demonstration of

improvement upon existing Kanboard applications is shown.

3. Implementation in any programming language the development team

chooses.

4. Use of a database to capture relevant data in a robust manner.

33

5. To be of no cost to the development team, project sponsor and end user

(such that cost analysis can be ignored in all project scoping and proposal

activities).

6.3 Analysis Of Project Outcome

With consideration to all three of the user acceptance criteria, functional and

nonfunctional criteria, we believe this project to be partially successful in that we

have been able to demonstrate an improvement in the form of that discussed in

Section 3.0: Outcomes, in conjunction with subsets of these outcomes as ‘Functional

Requirements’ 1, 2, 3, 6 and partially 7 (being able to commit to backlog). All

‘Nonfunctional’ requirements have also been met.

The extent to which requirements have been covered are not comprehensive, nor to

the level of detail that would have provided a more engaging experience with the

application. Particularly the limitation that multiple users cannot be working on the

same project board together. We would have preferred to implement the user

metrics feature as well as fixing some issues such as ticket creation and ticket

saving to work flawlessly. Porting information from front end to backend proved to be

problematic, therefore we will discuss possible changes to our tooling and

methodology that in retrospect may have assisted in achieving a stronger outcome.

6.4 Changes

As a team we did not make any major changes in regards to features but in regards

to added libraries. We added MaterialUI to our webclient which provides out of the

box UI components which can be styled according to our needs. These UI

components contained too much functionality that we couldn't ignore as it would go

on to save us countless hours. We did hope to implement analytics although time did

not permit. However this can be simply added with some SQL queries and formatting

the data nicely on our frontend website.

34

7.0 Conclusion

Having covered the scope of our delivered project and provided the background on

which it is based. We have discussed the project outcome within the key topics of

Section 3.0: Outcome, Section 4.0 Methodology and Section 5.0: Software

Deliverables. Our further discussion in Section 6.0: Critical Discussion included the

functional and nonfunctional requirements in our analysis.

In Section 3.0, we had outlined in detail what had been implemented and determined

that four key improvements had been achieved, these being:

- The ability to view historical states of the Kanban board.

- The allowance for planning and backlog to provide for future tasks in future

sprints.

- The ability to divide projects into sprint intervals.

- Communication via commenting ability on tickets.

The extent of these improvements came with a set of limitations and a justification of

main design decisions (based on the factors of time and skill, design complexity and

user convenience), of which for a future version of the project we could further

implement in order to enhance the product to a greater working standard.

In Section 4.0, we had dived into and explained our design methodology, both the

physical designing itself, as well as the project management methodology used,

which was largely the Kanban Agile approach. Here we identified a moderate

deviation from the initial project proposal, which was necessary in order to develop

the core improvements to a satisfactory standard rather than attempting to rush all

facets of the proposal to completion in the form of nearly bare functionality.

In section 5.0, we present our discussion on the software deliverables, where we

introduce the basic user side functionality of the application and what has been

delivered as a final result. These being the software itself, both regular user and

technical guides, and a testing report. We acknowledge that our software presents

certain software qualities such as robustness through no action events, security only

as a basic username-password and logout implementation, usability through modest

consideration to Normans’ 7 usability principles, scalability in the form of modular

design and maintainability by adhering to a static software stack not requiring

changes until later deprecation. Though we acknowledge that a more complete

version of our work would address the gaps in these qualities based on our

discussion.

35

In Section 6.0 we consider the initially proposed functional and nonfunctional

requirements and note that we had satisfied all nonfunctional requirements, while

partially satisfying functional requirements. Thus, our preference to have also

satisfied the ability to track and display user metrics would have added to the value

of our project in the perspective of the user who wishes to closely track developer

contributions. On our team's behalf, software stack changes are required in order to

provide a better product and assist with increasing the pace of development by

simplifying our approach and learning curve.

We come to the conclusion that the project has been met with a partial success due

the rudimentary and working web application delivered, which presents a set of

improvements as outlined in the project brief. While we have swapped out the

improvement detailing the ability to track user contribution with the ability to

subdivide projects into sprint intervals, this itself is a unique replacement feature.

While the team will not be implementing any further changes based on our previous

limitations after the conclusion of this semester, we will undoubtedly take forth the

lessons learned from the perspective of team management and that of project

development itself. This has yielded the benefit of allowing the team members each

to arrive at a greater level of experience and be able to reflect up and pragmatically

apply these lessons to our future endeavours.

36

8.0 Appendix

a. User Guide Contents

1: Sign Up and Login 5

1.1: Sign Up 6

1.1.1: Username 7

1.1.2: Password 7

1.1.3: Re-enter Password 8

1.1.4: Clicking “Sign up”: 8

1.2: Sign In 9

1.2.1: Username 10

1.2.2: Password 10

1.2.3: Forgot Password 10

2. Board 11

2.1 Navigation Panel 11

2.1: Projects Dropdown 12

2.1.1: New Project 12

2.1.1.1: Title Entry 13

2.1.1.2: Description 13

2.1.1.3: Cancel Button 13

2.1.1.4: Create Project Button 13

2.1.2: Board Tab 13

2.1.3: Plan Tab 13

2.1.4: Track Tab 14

2.1.5: History Tab 14

2.1.6: Profile Icon 14

2.2: Board Information and Ticket Creator 15

2.2.1: Board Information 15

2.2.2: Ticket Creator 15

2.2.3: Select Type 15

2.2.4: Name Ticket 15

2.2.5: Advanced 16

2.2.6: Add 16

2.3: Kanban Board 17

2.3.1: Tickets 17

2.3.1.2: Ticket Name 17

2.3.1.3: Ticket Description 18

2.3.1.4: Draggable 18

3. Plan 19

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.30j0zll
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1fob9te
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1maye4u0db6d
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.21eyqp9w8kqc
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3znysh7
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zczl5c9tp655
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.a4hfoytyiocw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.7tc7tvzicgvn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lhoybbb53ybz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ujfss46yp6rn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.mf2we1wvuhs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xwlfpqkyofvs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.w9ys3bo7at9f
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.31rid3i4wbmv
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zcqcxxg3l6m0
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.qlg8tdu2sc62
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ry7uxmpxqkjo
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.9xvqsrazugjq
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xzud82hnn1kw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.eg8d88t0oibz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.bsqb2n3hd2xp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.83eqrxcppqui
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.w801avw3f1z1
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xfwtcziet4la
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rihwkjvvmssk
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.6aj37ex334n9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1p94b6xew43r
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rh5kn0y240ke
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yuvz0oe2bxa
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.75r9jz3tavsi
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.b5f2zii79pop
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rbuor6j1nmxx
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.vbsfof4l2n0a
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8rt7918jmpvn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ct5talo1irpz

37

3.1: Sprint Information and Selector 19

3.1.1: Sprint Information 19

3.1.2: Sprint Selector 20

3.2: Sprint Creation and Completion 20

3.2.1: Create new sprint 20

3.2.2: Finish Current Sprint 20

3.3: Ticket Creation 21

3.4.1: ID Header 21

3.4.2: Title Header 21

3.4.3: Owner id Header 22

3.4.4: Status Header 22

3.4.5: Sprint id Header 22

3.4.6: Feature id Header 22

3.4.7: Created By id Header 22

4. Track 22

5. History 22

5.1: Kanban Board 23

5.2: Date-Time Selector 23

5.2.1: Reset Button 24

5.2.2: Date-Time Selector 24

5.2.2.1: Date Selection 24

5.2.2.2: Time Selection 24

6. Ticket 26

6.1: Description 26

6.1.1: Description Header 26

6.1.2: Description Textbox 27

6.1.3: Character Counter 27

6.2: Comments 27

6.2.1: Comments Header 27

6.2.2: Comments Display Box 27

6.2.3: Write Comment Box 28

6.2.4: Post Button 28

6.3: Information 28

6.3.1: Information Header 29

6.3.2: Created by 29

6.3.3: Assigned To 29

6.3.4: Feature 29

6.3.5: Assigned Sprint 29

6.3.6: Status 29

6.3.7: Save Changes 30

7. Exiting The Application 31

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.r2278377075
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8k0pd2b088na
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.55m4016uamh9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.liq04pj8gl47
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.d6nmm04e14ge
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1hvaicv0qc38
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.dw6a3tvkp8a3
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lx8w0p3ksa9n
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.d4gx196tul5z
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8xp7w3qzthz4
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.kc41g6nap294
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.4oqcu8w8nx32
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.s7h1eeoio3ed
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.mepjgpbkwpfp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.z0dyhijjx70
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.buxd4lgf97i6
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.g5flhce0rd3o
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.qmj14ha80qpk
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ba4j87jicu9s
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.iooitgw35q4z
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2rsk37bmkidy
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.it5myy8ga023
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.j9lm8nvbdtgz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.kxylhzuxlc5b
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.58ycuk96remh
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.vajj4nukq8gs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.loc3iemhojet
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yidbfp2c6ytd
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.h5o6uzqkhgaf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rg5dyiasjrrs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.s26xqzvies0b
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.5u93xtn9ymcf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.bkr8d5ux7qkd
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.jx58rxe2u6fo
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.fqtnekfdi7qn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.e7p2c9tzgkxw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ypnnnb1sggra
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.l9n77eogrxi8
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zaaot34jau1m
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yu1ijldvb8vn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2a1v0rl5am4w

38

8: Usage Limitations 31

Technical Guide Contents:

1: Branching 32

Here will be displayed how to branch from master and work on stories and
tasks. 32

1.1: Create New Branch From Command Line 32

1.2: Committing And Pushing 32

2: Setting Up The Development Environment 32

2.1: Install The Following 33

2.2: Setting Up WSL 33

2.3: Windows Terminal 34

2.4: Creating SSH Keys For Terminal 34

2.5: Cloning The Repository 34

2.6: Setting Up Docker 35

2.7: Installing And Setting Up Intellij 35

2.8: Vscode Extensions 36

2.9: Npm And Node 37

2.10: JDK 37

2.11: Installing React Packages 37

3: Building And Running 37

3.1: Building The Java Api Server 37

3.2: Starting The Api Server 38

3.3: Building The Website 38

3.4: Spring Project Built From

b. Code Sample

Here we have chosen a subset of our project code as a sample in order to

demonstrate project requirements being fulfilled. We provide the code, then explain

as follows:

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.pncmzla2pn8k
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.26in1rg
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.35nkun2
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.44sinio
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.z337ya
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1y810tw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1ci93xb

39

// BasicDateTimePicker Module

// get date-time and DateTime picker widget imports

import React, { useState, useEffect } from 'react';

import { AdapterDayjs } from '@mui/x-date-pickers/AdapterDayjs';

import { LocalizationProvider } from '@mui/x-date-pickers/LocalizationProvider';

import { renderTimeViewClock } from '@mui/x-date-pickers/timeViewRenderers';

import { MobileDateTimePicker } from '@mui/x-date-pickers';

import dayjs, { Dayjs } from 'dayjs';

import 'dayjs/locale/en-au';

// Standardised interface of date time to send to for historical data retrieval

interface DateTimeProps {

 placeholderText?: string;

 onClose?: (newValue?: Date) => void;

 onChange?: (newValue?: Date) => void;

 defaultValue?: Date;

}

export function BasicDateTimePicker({ placeholderText, onClose, defaultValue }: DateTimeProps) {

 const [value, setValue] = useState<Dayjs | null>(dayjs(defaultValue));

 const [windowClosed, setwindowClosed] = useState(false);

 useEffect(() => {

 if (!windowClosed) {

 return;

 }

 const timeout = setTimeout(() => {

 if (value && onClose) onClose(value.toDate());

 setwindowClosed(false);

 }, 1);

 // Give it a time out to make sure when user click on cancel, mui have enough time to

 // change the date back to previous

 return () => clearTimeout(timeout);

40

 }, [windowClosed, value, onClose]);

 // Run above code immediately after windowsClosed/value/onClose updated

 return (

 <LocalizationProvider dateAdapter={AdapterDayjs} adapterLocale="en-au">

 <MobileDateTimePicker

 onClose={() => {

 if (onClose) {

 setwindowClosed(true);

 }

 }}

 label={placeholderText}

 value={value}

 viewRenderers={{

 hours: renderTimeViewClock,

 minutes: renderTimeViewClock,

 seconds: renderTimeViewClock,

 }}

 slotProps={{ textField: { size: 'small' } }}

 onChange={(newValue) => {

 setValue(newValue);

 setwindowClosed(false);

 }}

 maxDateTime={dayjs()}

 closeOnSelect={false}

 />

 </LocalizationProvider>

);

}

41

// BoardHistoryModule

import React from 'react';

import '../styles.scss';

import { KanbanBoard } from '@/features/KanbanBoard';

// Allow Kanban Board to only view ticket data.

export const BoardHistory = () => {

 return <KanbanBoard viewOnly={true} />;

 // set KanbanBoard in view only (history) mode

};

42

// KanbanBoard Module

// … code excerpt (larger module)

export const KanbanBoard = ({ viewOnly = false }: KanbanBoardProps) => {

 const informationSlice = useAppSelector((state) => state.information);

 if (!informationSlice.currentProject.projectId) return <></>;

 const [isLoading, setIsLoading] = useState<boolean>(false);

 const [tickets, setTickets] = useState<FullTicket[]>([]);

 const [boardHistoryTime, setBoardHistoryTime] = useState<Date>(new Date());

 const [sprintInfo, setSprintInfo] = useState<FullSprint>({});

 const [getAllTicketsForActiveSprintQuery, _currentSprintTicketsResult, _lastPromiseInfo] =

 useLazyGetAllTicketsForActiveSprintQuery();

 const [getAllTicketsForhistory, _historyTicketsResult, _lastHistoryPromiseInfo] =

 useLazyGetBoardAtTimeQuery();

 const [GetActiveSprint, _sprintInfoResult, _lastSprintPromiseInfo] =

useLazyGetActiveSprintQuery();

 const [updateTicketPost, { isLoading: _isLoading }] = useUpdateTicketMutation();

 const [columns, setColumns] = useState<kanbanBoardColumn[]>([]);

 useEffect(() => {

 if (isLoading || !tickets) return;

 setColumns([

 { id: 'TODO', name: 'To Do', tickets: filterByColumn(tickets, 'TODO') },

 { id: 'PROGRESS', name: 'Progress', tickets: filterByColumn(tickets, 'PROGRESS') },

 { id: 'COMPLETED', name: 'Completed', tickets: filterByColumn(tickets,

'COMPLETED') },

 { id: 'ACCEPTED', name: 'Accepted', tickets: filterByColumn(tickets, 'ACCEPTED') },

]);

 }, [tickets]);

 // Load all the tickets

 useEffect(() => {

 if (!informationSlice.currentProject.projectId) return;

43

 setIsLoading(true);

 if (viewOnly) {

 // View only (history) mode, which is used in History

 void getAllTicketsForhistory({

 projectId: informationSlice.currentProject.projectId,

 atUtcDatetime: boardHistoryTime.toUTCString(),

 }).then((data) => {

 setTickets(data.data as FullTicket[]);

 setIsLoading(false);

 });

 } else {

 // Normal mode, which is used in board page

 void getAllTicketsForActiveSprintQuery({

 projectId: informationSlice.currentProject.projectId,

 }).then((data) => {

 setTickets(data.data as FullTicket[]);

 setIsLoading(false);

 });

 }

 }, [boardHistoryTime, sprintInfo]);

 // Run code above immediately once board time (History) or sprint (Plan) changed

 useEffect(() => {

 if (!informationSlice.currentProject.projectId) return;

 void GetActiveSprint({

 projectId: informationSlice.currentProject.projectId,

 })

 .unwrap()

 .then((data) => setSprintInfo(data));

 }, [informationSlice.currentProject.projectId])

 // Run code above immediately once project have changed

44

The date-time widget allows for selection of date-time to shuttle to the backend for

later retrieval, such that when calling upon the board history module, the kanban

board module can take the view only flag and then take a slice of the board

information (related to current project and sprint) and display it in the standard

fashion that the regular board display would do, except that we have invoked the

view only functionality in KanbanBoard. Now tickets in this information slice are

displayed and presented statically and cannot be moved/interacted with.

45

c. Attacks

Attacks can be run by first brute forcing username through the sign up page:

Brute Force:

Automate the process of entering in usernames from ∑∗{𝑎𝑙𝑝ℎ𝑎𝑛𝑢𝑚} (Maheshwari et

al., 2019, p.31). This defines the process of testing all combinations of inputs from

alphanumeric characters. Then scraping feedback until “User already exists” is

found.

Upon determining this another brute force of password from ∑∗{𝑎𝑙𝑝ℎ𝑎𝑛𝑢𝑚} with the

given username can be performed until successful login. However, do note that

since this application is not truly online collaborative, this has to be performed on a

specific machine which requires direct access. Thus it is not likely to occur. Instead

of a pure brute force password tester, one could utilise a password database to try

more likely options in a more reasonable amount of time.

SQL Injection:

This process can be found readily both online and through academic materials. It

involves within simple unguarded systems running the following into the username or

password box:

Select id from users where username=’username’ and

password=’password’ or 1=1--+

(Authentication Bypass Using SQL Injection on Login Page, 2020)

46

9.0 References

Beltrão, A. C., de Souza, B. P., Santos, P. S. M., & Travassos, G. H. (2018). On the

benefits and challenges of using kanban in software engineering: A structured

synthesis study. Journal of Software Engineering Research and Development,

6(1), 11. https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1

GeeksforGeeks. (2020, November 14). Authentication Bypass using SQL Injection

on Login Page. https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-

USING-SQL-INJECTION-ON-LOGIN-PAGE/

Hiranabe, K. (2008). Kanban applied to software development: From agile to lean.

Retrieved from http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Ikonen, M., Abrahamsson, P., Fagerholm, F., Kettunen, P., & Pirinen, E. (2011). On

the impact of kanban on software project work: An empirical case study

investigation. In 2011 37th EUROMICRO Conference on Software Engineering

and Advanced Applications (SEAA) (pp. 3-10). IEEE.

https://ieeexplore.ieee.org/document/5773404

Kamal, F (2020). Literature Survey on KANBAN: Opportunities and Challenges.

https://www.researchgate.net/publication/347586912_Literature_Survey_on_K

ANBAN_Opportunities_and_Challenges

Kniberg, H. (2009). Kanban vs. Scrum: How to make the most of both. Retrieved

from http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf

Lay, W. (2022). Notes On Norman's Principles: [PDF Notes]. Provided by Monash

University. FIT3175 Usability.

Llorens, B., & Viñoles-Cebolla, R. (2020). The influence of the use of project

management tools and techniques on the achieved success. In Proceedings of

the International Conference on Project Management (ICPM 2020), Lecture

Notes in Management Science (pp. 157-165). Springer.

https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12

Maheshwari, A., Smid, M., & Canada, O. (2019). Introduction to Theory of

Computation.

https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf

Pandey, A. (2020, April 26). 7 Best Project Management Tools. Gale Business

Insights: Essentials. Retrieved from

https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-

CDB&xid=605bd8a0

https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1
https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
https://ieeexplore.ieee.org/document/5773404
https://ieeexplore.ieee.org/document/5773404
https://ieeexplore.ieee.org/document/5773404
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf
http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0

