FIT3162 Team 23

Project Final Report

Word Count: 9725

(Not including cover, headers, images, code, etc)

Project 8: KanbanX - An improved tool for Project Management and task allocation

Team Members

Marcus Facchino 30604176
Matthew Zupan 25122533
Stephanie Tjin 31580025

Jiangye Song 31186408

Table of Contents

O [1 4 o Yo [0 Yo o o PRSPPI 1

2.0 ProjeCt BaCKGIrOUNGuuuuiiiiiiiiiiiiiiiiiiiiieiiib e 3

2.1 BACKGIOUNG ...ttt 3

2.2 Contemporary Digital Project Management TOOIS..........cccivvuiiiiiiiiieeeeceeiiee e ee e 5

2.3 Study 1 - Assessing the Benefits and Challenges of Kanban in Software Engineering:

A Structured SYNtheSIS STUAYccoiiiiiiiiie e e e 6
2.4 Study 2 - Examining the Impact of Kanban in Software Project Work: An Empirical

Case StUAY INVESTIGALION.uuuutiiiiiiitiiiieieeieeeiebeee bbb ebbeeebeebeessbnneesennnsenee 7

2.5 Concluding REMAIKScouiiiiiiii et e e e et s s e e e e e e e e aa e s e eeaeeenenes 8

IO @ 10 L (o 0] 1 1= PP SPPPPT 9

3.1 What has been implemented...........oooiiiii i 9

Sign Up, Sign in and SigN OULooviiiiiiiiiiieeee e 9

2 T o PP 9

o o R 10

[115 (o] VPP PSRR 10

103 PR 10

3.2 Results achieved/product deliVEred..............uuuuuuueiiiieiiiiiiiiiiiiiiiiieeieieiieeeeeeeeaeees 10

Sign Up, Sign in and SigN OUL..........cooiiiiiiiiiiiiiieeeeee e 10

20 7= 1 o 11

o o 11

[115 (o] Y PPURP PRSP 11

I o = PP 12

3.3 HOW are reqUIr€MENTS MIETuuuuiieiuiieiiitiitieieitiebebeeeieeee bbb eeenennee 12

3.4 Justification of deCISIONS MAAEuuuuuiiieiiiiiiiiiiiiiiiiiiiiiiiieeeeee e eerreenennnnes 13

B I T=T= T a0 IS 1| R 13

DESIGN COMPIEXITY...uuiiiieiieieeee e e e e e e e e e e e e et e e e e e e s e e arbraaeeaeaeas 14

(UL 0] Y71 o1 T= o o] P 14

3.5 Limitations Of ProjECt OULCOMESuuuuuruueiiiiiiiiiiiiiietiieteeieeeeeseeensseseseseeeeseneeeenaennennees 15

3.6 Possible improvements and future WOrKSooouueiioiii e 16

/B OV = To o o] Lo T | V2R 17

I = T | o 17

LU E= L (0] 0T 1= 1 P 17

Final Design And Deviation From The Proposalcccccuuiiiiiiiiiiiiiiiiiiiiiiiiiiiinns 19

4.2 IMPIEMIENTALION ...t 20

1= T QY= T gt T 1T g T o ST 20

SOFWAIE STACKeeee e e e e et e e e e e e eeaean s 20

5.0 Software DeliVerablesi i 21

5.1 DElVEIADIES ... 22

SOWAIE ... 22

USEIE GUITES ...ttt 22

LANAING PAUE ...eeieeieeiieeeieee ettt 23

SIGN UP @nd SIGN 1N 23

2 ToT=T o [== To [T PSRRI 24

L P T T o= To = PSPPSR 25

HISTONY PaAgE ..ttt 25

EXpanded TIiCKET PaAgE.... . uuueiieiiiiiiiiitiiiieieiietiieeieeeee e nnnennennenee 26

TESHNG REPOI ...ttt 26

5.2 SOftware QUANTIESuuuiiiiiiiiiieiie et e e e et e e e et e e e e st e e e e ebaaneeeens 27
RODUSTNESS ... 27
SECUIMLY et 28
USBIDIIILY 28
SCAIADIITY ..o 30
Documentation and Maintainability ..o, 30

OO O gL A o= I 1Y o U ES3] Lo [32
6.1 FUNCLIONAl REQUIFEMIENTS. ...cuiiiiii e e e e e e e e e e e e e e e e 32
6.2 Non fuNctional REQUITEIMENTSuuuiiiiiiiiiiiiiiiiiiiiieeeieiieeeeebeeebeebe bbb seeeeneeennne 32
6.3 ANAlySiS Of ProjECt OULCOIME.uuuuiuiiiiiiiiiiiiiiieiieeaeeeeeeeeaeeeseeeeeeseaesbeseeeeseeeseeneenennnne 33
(S O g = o o =TSSP 33
4O I @] T 11 1] Lo o I 34
ST o =T o | USSP 36
= IO T U] [0 [00 g1 (T o £ 36

D. COAE SAMPIE e 38

Lo 1 = V] S 45

0 0 RO I BN C S . e s 46

1.0 Introduction

This Final Project Report written by Team 23 consisting of Jiangye Song, Stephanie
Tjinn, Marcus Facchino and Matthew Zupan involves the discussion of our projects

successes and shortcomings within the following five main topic areas being:

The Project Background in Section 2.0. Here we introduce our project (project 8),
which has been to produce a Kanban Web Application named KanbanX with the
goal to demonstrate an improvement upon existing Kanban applications. We explain
the rationale for choosing this project and a background in order to provide context to
the improvements demonstrated. This section involves a literature review covering
academic materials in relation to the Kanban ideology, Agile project management
methodology and its application.

Outcomes discussed in Section 3.0 outline the features which have been
implemented in the current state of the project with a discussion as to how the
requirements of this project have been met and extended upon in order to consider
the result of the project a success. We justify our design choices and rationale from
the perspective of both the development team and the end user, and provide
consideration to the limitations of the project which allow us to come to a greater
understanding of the future actions and implementations that would lead to a more

complete and desirable outcome.

Methodology is identified and discussed in Section 4.0, where we divide this
discussion into both the methodological principles adhered to throughout, as well as
the physical process of design itself (the implementation). The latter refers to the
‘what’, being the tools used and a description of their purpose. We compare in this
section the differences between the initial project proposal and the current outcome
in correspondence to our previously (last semester) identified user acceptance

criteria.

Software Deliverables are covered in Section 5.0. Here we include not only the
software itself and summarily state how it is used, but a detail of the supporting
documents such as the User Testing Guides (User and Technical), as well as the
Testing report which are necessary in order to provide a more complete package for
the end user. Deliverables themselves possess certain qualities, of which software
gualities are most important which are: robustness, security, usability, scalability,
documentation and maintenance. We discuss how our software possesses these

gualities and identify what may be necessary to satisfy these to a greater level.

The last main section is the Critical Discussion in section 6.0. Here we derive as a
brief extension to contents of previous sections, a discussion of what changes are
necessary (especially with respect to tooling, implementation methodology) that
would facilitate a better outcome based on the functional and nonfunctional
requirements brought forth as a revision from our initial proposal. Here we seek to

provide those extra considerations not covered in previous sections.

Finally, we conclude our report with a summary of the main topics and important
discussions identified. We provide additional materials in the Appendix (such as a
required code example and the explanation of how this satisfies project outcomes),
along with a tailing set of references to any external materials cited for the purpose

of discussion and reflection upon our work.

2.0 Project Background

2.1 Background

Kanban boards, derived from the Japanese term "kanban" meaning signboard, are a
potent tool for project management. Originally employed in manufacturing, this
concept has found its way into software development and various other industries. A
fundamental board consists of columns populated with task tickets, with each column
representing different states or processes. These tickets act as regulators,
controlling the flow between various states on the board. Kanban boards serve as
visual aids that facilitate the visualisation of workflows, impose limits on work in
progress (WIP) at each state, and gauge cycle time to boost productivity. The
principles of Kanban, rooted in lean and agile methodologies, have attracted
attention as a potential approach to improving project management and productivity.

In the literature review conducted last semester, we delve into the guiding principles

of Kanban as outlined by Anderson (2010), which encompass:

. Visualising Workflow: The central tool for visualising and coordinating teamwork is
the Kanban board. This board is composed of columns representing various stages
of activities, such as "To-Do," "Doing," and "Done," with cards representing the
features or tasks currently under development.

. Limiting Work in Progress: The effective management and limitation of work in
progress (WIP) is vital. Establishing mechanisms to control and signal when a new
task can be introduced into the workflow is crucial.

Measuring and Managing Flow: Monitoring the Kanban process entails utilising
various statistics and diagrams, including measuring cycle/lead time, tracking
gueue size, and utilising cumulative flow diagrams to gain insights into work
progress.

. Explicit Process Policies: Clear process policies are essential for ensuring a smooth
flow, as they define the conditions necessary for the pull system to function
effectively. These policies address aspects such as task assignment, activity
allocation to developers, and the transition of work items from one state to another.

. Utilising Models for Improvement: Kanban advocates the use of models to identify

areas for improvement. Three suggested models include the Theory of Constraints,

a subset of Lean Thinking that identifies wasteful activities as economic costs, and

other variants that focus on understanding and reducing variability in the workflow.

To facilitate practitioners in comprehending and analysing the advantages and
challenges of implementing Kanban in software projects, several research studies
have probed its impact. This literature review offers a synthesis of two crucial
research articles focusing on the application of Kanban in software engineering and

its associated benefits and challenges.

2.2 Contemporary Digital Project Management Tools

Various project management tools with a digital approach exist to aid teams in
organising and collaborating efficiently. Notable online tools, such as Trello,
ProofHub, Asana, and Jira, provide features for task management, collaboration,
task assignment, progress tracking, attaching files to tasks, setting due dates, and
facilitating team communication (Pandey, A. 2020). These tools exhibit differences,
with Trello emphasising simplicity and workflow visualisation, while ProofHub offers
additional task views, such as the Gantt chart (Pandey, A. 2020). Jira, on the other
hand, is tailored specifically for software teams, featuring elements designed for

software development and automatic reporting (Pandey, A. 2020).

2.3 Study 1 - Assessing the Benefits and Challenges of
Kanban in Software Engineering: A Structured Synthesis
Study

Conducted by Paulo Sérgio Medeiros dos Santos, Alessandro Caetano Beltréo,
Bruno Pedraca de Souza, and Guilherme Horta Travassos (2018), this study
employed a structured synthesis approach to consolidate evidence from published
primary studies concerning the benefits and challenges associated with
implementing Kanban in software engineering. The research aimed to pinpoint the
actual advantages and hurdles tied to Kanban. By analysing 20 chosen primary

studies, the authors identified significant benefits, including:

1. Enhanced Work Visibility: The Kanban board offers superior clarity on the
development process and indicates which developer is working on each task.

2. Control over Project Activities and Tasks: The WIP limit directs the software
team's efforts, preventing them from taking on too many parallel tasks and
ensuring that they focus on value-delivering tasks.

3. Enhanced Flow of Work: Kanban provides deeper insights into team activities,
thereby improving feedback loops and highlighting resource constraints.

4. Reduced Time-to-Market: While the impact of the Kanban board on software
product release time is somewhat wealk, it does contribute to more efficient

product production.

These advantages extend to niche areas like 'portfolio management' and educational
applications. However, an organisation's ‘culture’, 'management expertise’, and

'supportive practices' are crucial for realising these improvements.

Additionally, the authors posit that while Kanban has the potential to enhance 'team
cohesion' based on the observations, its success in doing so hinges on the team's
willingness to embrace the mindset shifts associated with Lean principles and
Kanban methods. This implies that for Kanban to positively influence social
dynamics, there must be a foundational openness to change and collaborative work

within the team.

2.4 Study 2 - Examining the Impact of Kanban in Software

Project Work: An Empirical Case Study Investigation

Authored by Marko lkonen, Elena Pirinen, Fabian Fagerholm, Petri Kettunen, and
Pekka Abrahamsson (2011), this empirical case study investigates the influence of
Kanban on software project work in a Software Factory research and education

setting.

The authors state that some common project risks in software development utilising
Kanban mitigates, such as those associated with scheduling and scope. Kanban's
method of joint goal-setting by customers and developers, along with its flow-
focused, incremental task structure, enables precise, data-driven scheduling and
budgeting. Lean's "defer commitment" principle guides decision-making when most
informed, reducing uncertainty. This flexible system adapts to changing
requirements, streamlines decision-making, and prevents unnecessary features,

thus improving requirement management control.

The study relied on empirical data gathered during a case study of a team employing
a Kanban board for project management. The research methods encompassed
video and direct observations, one-hour thematic interviews, diary records of
observations, and taped interviews. The findings revealed that Kanban facilitated
problem-solving by illuminating workflow bottlenecks, promoted informal and open
communication, and encouraged shorter feedback cycles through task
decomposition. The study also highlighted the intuitive nature of Kanban and its

ability to empower developers in task selection.

They also emphasise that the more Kanban is scrutinised, the clearer its adaptability
and potential benefits become, pointing to a rich field of research yet to be fully
explored and utilised.

2.5 Concluding Remarks

By amalgamating insights from these two studies, it becomes evident that Kanban
holds significant potential for enhancing software engineering, with benefits including
improved work visibility, better control over project activities, enhanced workflow, and
reduced time-to-market. Nonetheless, the influence of organisational culture during
Kanban implementation cannot be underestimated. These studies provide valuable
guidance to practitioners considering the adoption of Kanban in their software
projects, enabling them to make informed decisions and leverage the method's

advantages while addressing challenges effectively.

3.0 Outcomes

Within the section of project outcomes we will discuss the features that have been
implemented along with the results achieved in the product. We shall discuss how
project requirements have been met and justify our design choices due to the
decisions made throughout. We will further discuss the limitations of our work and
extend upon this by considering the possible improvements that could be applied in
future if this project were to be given further attention beyond the scope of the
semester. We save further discussion of meeting acceptance criteria in Section 6.0:
Critical Discussion.

3.1 What has been implemented

Over the course of the semester, we have implemented the following features to our
project. A more thorough and complete guide of the KanbanX application contents
exists in our previous report “User Guides” (note that usage will be covered in
Section 5.0: Software Deliverables), the core contents of which are provided in
Section 8.0: Appendix - User Guide Contents. So we will only summarise what has
been implemented at a high level here.

Sign Up, Sign in and Sign out:

e Sign up, if you do not already have an existing account and would like to
become a user of the application. This involves creating a username and
password which registers the account to the application.

e Sign in, if you already have an existing account and would like to login. This
involves entering in registered account details to access the application
contents.

e Log out of the application by clicking on the user profile icon in the top right
corner of the navigation panel and selecting ‘log out'.

Board
The board page provides multiple features to the end user, these are:

e The ability to view a project Kanban Board and create and move tickets on
this board. Board columns are titled ‘TODO’, ‘PROGRESS’, ‘COMPLETED’
and ‘ACCEPTED'. The ticket ID, title and description are visible.

e Click on ticket ID to go to an expanded view of the ticket.

e The ability to create a new project through the projects dropdown menu, as
well as select the project board to view.

Plan

e The plan section allows for viewing of information related to the past, present
and future sprints in a project. Extending upon this, a new sprint can be
created and the current sprint can be completed. Sprints are short bursts of
work on specific tasks that can be repeated throughout the project lifecycle.

e Ticket creation for the current sprint can be performed in the plan section for
the currently selected project, which is then added to the project board.

History

e The ability to view a project boards’ history is available in the history section.
A date-time selector can be used to view the state of the board at the chosen
date-time. The projects’ Kanban board will then be displayed statically (ie,
non-interactive).

Ticket

e Tickets refer to Kanban cards in this application. These tickets while present
on a given project board, can be clicked on to provide an expanded view
which presents more detailed information on the ticket itself, such as the user
assigned to work on the ticket, the project and sprint it belongs to, the ability
to comment on tickets and read ticket comments, view and edit its description,
as well as to change its state on the board. Changes can be saved within this
expanded view.

3.2 Results achieved/product delivered

The results of the currently delivered product follow from the implementations
outlined previously. Users are able to sign up and log in to the application, create
and interact with projects, sprints and Kanban cards that can be moved across the
Kanban board based on the status of any defined task. With the ability to view board
history and leave comments on tickets, progress and decisions made can be
monitored. We will outline the implications of each major feature next.

Sign Up, Sign in and Sign out

Sign up and login allow for users to interact with the application uniquely, that is, to
have a distinct profile that cannot be accessed by any third party. This provides a
level of security, such that unwanted users cannot view or modify the contents of a
project nor access sensitive data/information.

10

Logout prevents those who have left their computer etc running from having others
enter the application and modify/view any information that they should not have
permission to do.

Board

The board page provides a high level overview of the current state of a project, such
that the tickets within can all be viewed to understand which tasks are in progress,
need yet to be started, or have come to completion or require review. The columnar
representation of the Kanban board provides a simple and easily readable temporal
display of the project state. The ease of interaction with the board by dragging cards
across columns removes unnecessary complexity of manipulating this high level
overview. Furthermore, with project and sprint information clearly displayed above
the board, there is little confusion as to what the board information is referring
to/represents. Relevant information and features to a project should be easily
accessible from the board page in order to avoid the need to traverse across multiple
pages in order to perform a project specific action, hence we include the ability to
create and select projects, as well as create tickets within the board page to keep
this functionality cohesive.

Plan

The plan page introduces a bit more complexity as this delves into project specifics.
It is not regarded as the high level overview, but allows for manipulation of sprint
activities. Given a project may consist of one or more sprints, we can plan for future
sprints, creating and assigning tickets as necessary into a backlog such that when
the current sprint has ended, the new tasks are present in the next sprint. By
selecting a past sprint, a tabular summary of the tickets on the project board are
presented where the state of the board at the end of that sprint is captured. The
consequence is that it is then clear what has remained unfinished and what is
required to be ported over to the next sprint. This captures the essence of planning,
as we can see what follows from the previous and create what is necessary in
response.

History

Board history provides a higher degree of temporal context beyond the tabular
summary of ‘end of sprint’ information, because it allows a more fine grained view of
a selected project board based on exact date-time specifications. A specific ticket or
collection of tickets can be seen to be stagnant when present in the same board
location over some duration. The direct implication being that either the task is

11

complex and requires more time to complete, or an assignee is stagnating in their
work. Notably, viewing history allows one to see at what time a ticket has moved
state or to be able to reference the time that progress for the ticket commenced or
completed for reporting reasons. The date-time selection feature, allowing for
calendar date selection and its accompanying clock selection sub-feature allow for a
more flexible granularity in the selection process when varying levels of time-based
specificity are required upon review. However, it should be noted that the board state
is not represented as a ‘snapshot’ at every minute interval, given that the amount of
data required to store this grows largely. Changes are stored only when they occur,
therefore the history presents the most recent version of the board at or prior to the
selected time.

Ticket

The expanded ticket page provides the user extra support and access to ticket-
specific information. Having a single user assigned to the ticket prevents duplication
of work for that ticket and the ability to view all ticket information in a single location
and modify that information allows for task specific consistency. An editable
description allows errors or misinterpretations regarding the nature of the task to be
fixed or elaborated on, and the ordered listing of comments provide not only
guestions and updates related to the ticket, but the time-based context of this
information. Given that we can also change and save information, we do not need to
go back to the board to move the ticket, thus giving us greater control without having
to jump back and forth between board and ticket views.

3.3 How are requirements met

The project brief outlined four main requirements for the Kanban project, these
being:

1. The ability to view history of the Kanboard, ie, allow users to view how the
board was at various times earlier (eg, 1 or 2 weeks earlier).

2. The ability to pre-commit tasks, ie tasks that would be undertaken in the
future.

3. The ability to view/monitor each team member’s percentage contribution to
the whole project, and better allocate tasks to team members.

4. Access to improved collaboration and communication between team
members.

These requirements represent an ‘improvement’ that a Kanban application can have.
However, this set of requirements is not comprehensive, thus other improvements

12

may be considered. For this reason, we have replaced requirement 3 with a different
feature, being:

3. The ability to break down projects into smaller units (sprints).

We have met the requirements 1,2,3 and 4 in the following way:

1. The board history page allows for date-time selection of a selected project,
providing a view of the state of that kanban board at the selected time.

2. The plan page allows for ticket creation, where the backlog is available for a
future sprint.

3. Sprints can be created and completed in the plan page, the board page
displays the kanban board for the current sprint on the currently selected
project. This board is interactive.

4. Tickets in the expanded view have the comments feature, displaying all
comments on the ticket which can be read and responded to.

These requirements occur in conjunction with the implicit requirement that we
provide for a regular functioning Kanban application with the previously outlined
being integrated within. Not just separate ‘improvement’ components, but instead
provided within a contextual setting. Furthermore, it is implicit that the product has
been tested and working at least on a basic level, of which we have somewhat
achieved (discussed further in the Limitations subsection).

3.4 Justification of decisions made

Implementation decisions and design alterations occurred for three main reasons:

1. Time and skill limitations - Team members were required to maintain a
work/life and study balance across multiple units while satisfying project
outcomes. Additionally, team member experience in relation to this project
varied.

2. Design Complexity - Considerations to the need for restructuring the code and
interactions across modules.

3. User Convenience - How the end user would receive, interact with and learn
to utilise the applications functionality.

Time and Skill

The time available for members to work on the project was limited and due to the
lack of experience, we were unable to implement more advanced functionality such

13

as tagging users in comments and the display of user statistics in a graph on a
separate page. So we had to keep design simple and allow for basic functionality
while showing some improvements as described before. Having too many features
would have significantly reduced the quality of each deliverable, with insufficient time
spent to achieve a working standard beyond a prototype.

We had omitted the ability to rename Kanban board columns as this would require a
more advanced script to then run through the database and change all instances
throughout to reflect the renaming, with possible data inconsistencies. Figuring out
how to make alterations to the database to extend upon existing features (such as
adding an estimate of task difficulty as user work scoring method) already posed a
challenge, so we omitted this functionality as well.

Design Complexity

Maintaining a modular design, such as modules for the expanded ticket, board,
board history, the plan page and such kept the development of such items within
their own scope. This helped reduce the complexity of design by allowing items to be
developed in their own location and reduce the amount of coupling needed between
modules. Having a design that induces too many dependencies and inter-related
items increases the debugging time due to one change somewhere affecting many
other items elsewhere. We also wanted the project to be scalable, thus packaging
together related modules was necessary. In the backend for example, we keep
controllers together, fetch requests etc. We also separated our frontend and
backend, with vscode using javascript and tailwind css as the development
environment for the front end such that we can style and manipulate data on this
side once transferred from the backend logic and controllers, which themselves
provide the servicing and structure of the application. The backend utilised IntelliJ
and java for this purpose as it integrates well with the data related functionality.

User Convenience

User convenience was a significant driving factor with regard to the design decisions
made. We chose a web based application for accessibility, requiring sign up and
login to commence use and operation, this along with the ability to log out was
intended as a layer of security. User technical experience must also be considered,
so for that reason breaking up core elements of functionality such as project
creation, the Kanban board overview, expanded ticket information, history and
planning/sprint manipulation allowed for relevant information to be located in mostly
one place. We included a navigation panel at the top with the same layout across all

14

of the above mentioned pages to ensure consistency in design and reduce the need
for learning.

Using an interactive Kanban board provides immediate visual feedback of the
board's state, the ability to edit ticket descriptions within the expanded ticket reduces
the propagation of errors and the separation of the board history page from the
current board reduces confusion as to what is being viewed. We wanted our board
history selection process to be symbolically conveyed, and so the calendar date and
clock selection widget made it clear what the selection represents.

While the plan page involved more project specific information, we wanted to ensure
that components appeared together but were clearly distinct from one another.
Which is why we used a tabular format of sprint information at the bottom of the
page, with sprint manipulation and ticket creation in a separate panel above.

3.5 Limitations of project outcomes

The current limitations of the project depend on the disparity between expected and
projected functionality. However, from the basic perspective, we have the following
limitations:

e The inability to assign more users to the project, including the inability to
assign users to tickets and thus to re-assign users.

e The inability to reset or recover account information if it is lost/forgotten.

e Assigning tickets to different sprints is not functional.

e Inability to assign a work estimate (weighting to the ticket), such that this
weighted contribution by assigned users can be compared and presented
graphically according to an average of all other users working on the project.

e Inability to rename Kanban board columns to better suit the project nuances.

e |nability to be tagged in comments and pinged to be notified of this.

A more projective set of limitations include:

e The inability to schedule tasks of a recurring nature, that is to automate
assignment to future sprints. This includes the limitation that sprint starts and
completions are actioned manually.

e Advanced ticket creation features are not implemented, such as assigning a
type to the ticket (for example, ‘feature’, ‘prototype’, ‘test’ etc).

e Breakdown of projects into ‘features’ (sub-projects), which themselves contain
sprints.

e Inability to delete tickets or reverse/revert changes, such as reversing the
action to complete a current sprint if done by accident.

15

Inability to personalise account details/information to a level beyond the sign
up functionality.

3.6 Possible improvements and future works

Necessitated by the current limitations of the application we should consider
addressing each of the previous as an improvement upon our current work. We also
consider a few other ideas that would be interesting:

16

The ability to block tickets from being started until the dependence is marked
as completed. The removal of this block is automated.

Restrict access to certain actions such as moving tickets that do not belong to
a user, unless their access level is higher than that of a developer. This can
involve the ability to grant and revoke access.

Include a leaderboard which displays developers who have completed the
most work.

Include tooltips when hovering over buttons to provide hints on their
functionality.

Include a help page in the application which addresses main usage questions
and links to a complete user guide.

Colour theme customization for users with visual impairments, so that
features are easily distinguishable.

4.0 Methodology

In this section on methodology, we focus on two main aspects of the project. These

are:

1.

2.

The aspect of design, which includes a brief of the initial proposal and moves
on to a discussion of the deviation and impact of this between this initial and
current design.

The Methodology (principles) adhered to during implementation of the project
in relation to task management, and the physical methodology in regards to
design itself, tooling/software used and how this process took place.

Our intention here is to more so convey how we arrived at the current state of the
project, as we will cover what the project looks like in Section 5.0: Software
Deliverables.

4.1 Design

Initial Proposal

The initial design from semester 1 was a listing of user acceptance criteria rather
than a physical design itself, and for this reason we list these criteria here:

17

An acceptable product will run on any pc, laptop or tablet device with an
internet connection able to connect to the application webpage. Given that a
website is being developed, access is independent of the operating system of
the end users’ device.

A login screen that allows the user to create an account with a username and
password if their account does not already exist, and to be able to enter in the
user login details to access the rest of the application functionality if an
account does already exist. Users who close the webpage are logged out by
default.

From this point onwards, the application must establish a permissions
hierarchy such that additional project security is implemented, allowing for
user access levels such as:

Administrator, with the greatest level of access, to be able to create and
delete projects, features, epics and tickets as well as add users to such
projects and assign their access levels. The administrator is thus considered
as an owner of generated project and user data.

18

Project leader, with unrestricted access the same as an administrator has, but
only within their assigned projects, project leaders can accept users into
projects but only assign developer level access and no level higher.
Developer, with the least access. Developers cannot add or remove tickets,
assign users to tickets or add users to projects, nor grant permissions. They
are unable to view any project outside their own assignments. However they
are able to comment on all tickets and work on their assigned tickets as well
as view board and user metrics.

A menu bar which contains the menu options to change pages/view from a
selection of projects in the project option, to access the historical board
selection page from the board history option and to access the user metrics
page from the user metrics option. Project selection also involves a nested
subset of selection options to select the relevant epic and feature within a
project.

The ability to view the state of a project board given by a time specification,
that is, at a specified time, the tickets present on the board at that time are
displayed in a separate historical view in the columns they resided on at that
time.

The ability to assign to each ticket a value which weighs how many units of
work the ticket is worth.

The ability to display how much work a chosen user has completed in
comparison to all the tasks during a given time interval based on the weight of
the tickets in this interval. This includes the ability to display rankings of users
against other users based on how much work was completed, say in the form
of a pie chart or bar graph.

The ability to move cards across the columns of the Kanboard for users who
are working on that given card/ticket, or in the case of users with project
leader or administrative permissions to do so as well. Tickets that have been
placed in the done column will show up in user metrics searches as the user
having completed the work.

The ability to comment on tickets for all users assigned to a given project for
which that ticket is located within. This includes notifying an user who is
tagged in a comment with the ‘@<username>’ tag.

The ability for users to read comments in a separate popup near the ticket
when the comments option on the ticket is clicked on, the user is defaulted to
their least recently unread comment.

A database for which to hold all related data and relations between data for
storage and processing, of board view and metrics as well as permissions,
assignments, projects, epics, features, tickets, comments and login data.

The ability for a ticket to display the derived attribute ‘days since creation’ in
days to easily determine how long the ticket has been active for.

The ability for project leaders and administrators to pre schedule tickets in
project boards to begin at a given date, with the option of allowing recurring
pre scheduling intervals.

Periodic purging of tickets from the done column in a project board to avoid
excess build up of tickets in this column, with the option to purge based on a
selected time period (multiples of one week).

The ability for only one user to work on a ticket.

Product testing by the team to ensure reliability, accuracy, security, quality
and that acceptance requirements have been met.

Final Design And Deviation From The Proposal

The final design implementing the features identified from Section 3: Outcomes
deviates from the above in the following ways:

19

The product is a web application but requires Windows or Mac running our
software stack as it has not been floated as a standalone website. This
reduces accessibility.

The permissions hierarchy does not exist, which means that projects are
viewable and interactive to any user. A reduction in information sensitive
security.

The navigation/menu bar does not contain user metrics, so user workload is
not tracked, reducing user workload analysis ability.

Comments on tickets do not involve username tags, so there is no explicit
notification to alert relevant users of potentially important information, such
information can be missed.

Ticket creation time is not displayed, although it does have an entry in the
database. While board history can determine this metric, it could be made
more accessible, say viewable directly on the board or in the expanded ticket
page for simpler analysis.

Purging of tickets can be done manually by ending a current sprint, rather
than the automated periodic purge. An automation feature is convenient, the
manual option does allow for greater flexible pacing control however.

4.2 Implementation

Task Management

Task management utilised Trello, an online Kanban board tool to manage tasks with
team members assigning themselves to tasks and moving them across the Kanban
board based on completion. The Kanban methodology considered by us to be
encompassed within the Agile methodology allowed for tasks to be re-assigned if a
member had excessive difficulty, or to move a task back from the completed column
to ‘todo’ based on any future extensions that were deemed appropriate, such as
extending upon the information present in ‘expand ticket to view’.

While the user acceptance criteria is considered highly predictable, such that a
waterfall methodology can be used (prototype, develop, test), we still required the
flexibility of Kanban for greater task tracking, and an organised presentation of all
tasks at hand. Movement to the progress column determined when a task had been
started, and movement to ‘review’ indicated that it was time for another member to
pull the separate branch in which this task took place, test that branch and then
provide comments and feedback based on the result. A successful review would
then see to the merging of the task and any changes with the master branch on Git.
This process/methodology remained the same throughout the project lifecycle.

Software Stack

Tech Stack
™ Tailwind CSS o ESLint
L(/’\)Redux OO/% ~ TypeScript @ d hg), e
Backend
Javé A
@ e
J . 82 o
672 OPENAPI
4N GTTa

Buiid Tools [Data |
@ Trello
Maven

PostgreSQL

20

We made use of React Typescript as our framework and our language to build our
client. React is a popular framework which uses Javascript and Typescript. We
chose React as it is a popular modern framework used in the industry so future
engineers who work on this will not have trouble finding resources to troubleshoot
errors. We used typescript to ensure we have type safety in our language and errors
that we don't propagate stupid type errors to the user and keep our solution robust.
To accompany our React we make use of popular libraries such as Redux which is a
local data store that allows us to store data and access it across our application
similar to a local database. WE use tailwind CSS, Material Ul and SASS to build and
style our Ul components to a consistent standard. ES lint is used frequently to keep
our typescript files to a specific code standard and set custom rules such as ensuring
we handle null variables and not use the ‘" operator which tells our compiler this is
not a null value which is bad practice. Lastly for our client we use Yarn package
manager to install, add and remove packages.

Our Backend uses Java, a popular programming language that can be run on most
machines. We chose to use Springboot, a popular and mature API server
framework. Springboot was chosen due to its heavy presence in the industry and its
wide adoption also means any future work done on expanding the solution will mean
lots of documentation online.

For our infrastructure we use linux as our development OS using any flavour. We
use docker to run our database locally alongside docker will be chosen to package
our solution and deploy it.

For our development tools we made heavy use of VS Code for our Non Java
development and for our Java Development we made heavy use of Intellij. To build
our Java code we use MAVEN similarly to yarn; it provides us with an interface to
add and remove packages to help development.

We used postgresqgl for our database services. Postgresql provides a strongly typed
system that ensures our tables and relations contain no mismatches on deployment.

We used trello to keep track of tickets and activities so we had oversight into what
other members of the group were doing. Github was used for our version control to
help us work separately and merge and review code.

5.0 Software Deliverables

The software deliverables do not come standalone as a set of source code/packaged
software, as it is required that software come with a manual for usage, in our case a
User Guide, which additionally includes a Technical Guide for installing, running and

21

even being able to begin developing with the code. The software deliverable itself
also inherently consists of its own internal software qualities, being: robustness,
security, usability, scalability and documentation/maintainability. Here we introduce
the previous and provide a sample of our source code in the Appendix under the title
‘Code Sample’ to demonstrate how software requirements are being fulfilled.

5.1 Deliverables

Software

We will provide only source code and not a packaged version of the program to
deploy. We will provide a website alongside documentation inside of our README in
our source code on how to start up the solution. We will deliver an API server which
will handle requests sent by our Kanban Board website. Our website is a Java
Server that takes requests. Our Client Interface is a react website that can be started
and hosted which interacts with our backend. We also provide a database docker
image with an accompanying script to start and initialise the database which our
Java backend talks to.

User Guides

The user guides have been presented as a report written by the team and uploaded
to Moodle as part of the semester 2 assessment. Furthermore it is available on
google docs but with restricted access to those who are given explicit permission to
view and/or edit this folder. The Moodle upload is considered the most important
here as it is readily accessible to the teaching team who is considered our ‘project
sponsor’ given that we have no other external party that this project affects.

The user guide is a thorough documentation of all of the software functionality and
comes complete with contents and screenshots of all processes and features. These
are documented in detail, with explanations of where items are located, their exact
functionality and how to read and use them. An extension to this guide is the
Technical Guide, which covers the main aspects of software installation. This
contains the contents of the teams’ Github page explaining what software is used
along with what commands are used to proceed with the installation process and
how to access the collaborative source code from Github. Here we assume a
Windows machine is to be used. The main three topics covered are Git Branching,
setting up the development environment and building and running (the server and
website). We provide the contents of this in the Appendix under the title “Technical
Guide Contents”.

22

We will cover usage here to a lesser extent than present in the User Guides:
Landing Page

E KanBanX Sign in ISNT]

LETET)
KanbanX brings

all your tasks,
teammates, and
tools together!

GET STARTED SIGN IN

Here we arrive at the main landing page when entering the website, where the
options to sign up or sign in are present.

Sign Up and Sign In

I8 KanBanX 1§ KanBanX

« Sign Up < Login

Username Username

Enter userna

P d
ssssss Password

Enter passwortc
Re-enter Password

FORGOT PASSWORD?

ALREADY HAVE AN ACCOUNT? SIGN IN — DON'T HAVE AN ACCOUNT? SIGN UP —

To sign up, enter a username and password, then re-enter the password to ensure
correctness and click sign up, then the login option becomes valid, alternatively if we
have login details already, we can directly login by entering our username and
password and click login.

23

Board Page
E ;’ISI"F3161 = Plan History Hello Jiangye! O

Sprint: Invalid Date

TODO PROGRESS COMPLETED ACCEPTED

I = e |

The board page offers the ability to select or create projects by clicking the top left
project dropdown, the create new ticket function here is erroneous thus we should
only create tickets for a project in the Plan page (present in navigational panel).
Tickets appearing on the Kanban board in this board page are draggable and
clickable to enter an expanded view.

PROGRESS COMPLETED ACCEPTED

Present Source images Assign tasks
Presentation to be held on 10th Split speaking topics and assign t

Oct! hem to members.
Proofread slides

Create presentation slides
Communicate with script writer to
ensure slides match

Write presentation cues/script
Cues to prompt topics/ideas to b
e spoken about.

24

Plan Page
Project))
E] Final Presentation ~ Board M History Hello admin! O

. Sprint A EW S FINISI E 3
Sprint: (Current) * (10/10/2023~Current) CREATE NEW SPRINT INISH CURRENT SPRINT

Backlog OWNER ID STATUS SPRINT ID FEATURE ID CREATED BY ID
1 (Current)
Tr|Create presentation slides

Write presentation cues/script

Source images

Present

Proofread slides

Tickets can be successfully created here, sprints can be selected for view in the
table, presenting a summary of tickets in the selected spring. Sprints can also be
created and completed to enter the new sprint.

History Page
E ;fum\ Presentation ~ Bosrd Pl Hello admini O

TODO PROGRESS COMPLETED ACCEPTED

Assign tasks
Split speaking topics and assign t
hem to members

Create presentation slides
Communicate with script writer 1o
ensure slides match

& spoken abo

Source images

Present
Presentation to be held on 10th O
et!

Proofread slides

r Pick up a time of the board: 10/10/2023 0152 AM RESE 1

The bottom panel allows for one to choose the date and time for which the view of
this board is updated to reflect the state at that selected date-time. This is a static
display. The date-time selector has a calendar-clock format as such:

25

SELECT DATE & TIME SELECT DATE & TIME
2023 AM 2023 .
° M
oct13 171:09 5 11:09:
Oct 13 . PM
B ®
October 2023
12 >
1
10 2
9 3
8 4
7 5
6
CANCEL oK CANCEL [0]:4

Expanded Ticket Page

« US1: Project Dropdown

Description Information

Created by:

as a user i want to f

be able to select my current project from a list of project dropdowns. Assigned to:

279/1000
! Feature:

Comments
Assigned Sprint:
1

Status:
ToDo

=]

This page includes more detailed ticket information (description, comments, user,
sprint, board column) and is editable by clicking save changes after a change is
made. Posted comments are automatically saved.

Testing Report

The testing report is available within the same Moodle upload as the User Guides
and is a rudimentary report detailing our testing procedure. As an outline of this
process we have employed the following testing methodologies: Whitebox Testing,
Blackbox Testing, Integration Testing. This comes with a discussion of the testing
approach and limitations.

e \Whitebox testing involves writing unit tests in our Java backend using the
Springboot testing framework.

26

e Blackbox Testing involves manually testing the application by interacting with
the site after/during the implementation of a feature. For example, moving a
ticket across the Kanban board to check for correct behaviour.

e Integration Testing involves testing the interaction of multiple implemented
features together as a whole. For example, we can test ticket creation on the
plan page, movement on the board page and then re-movement from the
expanded ticket view page to check that changes are stored correctly when
displayed on the site in comparison to the actions we have taken.

We discuss in our test report how unit testing and integration tests are run. We have
laid our stages and steps on how they are conducted and run in our application. Our
unit tests are run with the maven test command. Which includes our whitebox box
behaviour. Our blackbox testing is a set of steps around the feature / parts of the
program we edited or made changes to, to test that our changes did not affect other
parts of our site or had unintended side effects. Finally our integration tests are done
by hand and by following steps. More detail is mentioned in the Testing guide.

5.2 Software Qualities

Here we refer to and discuss the properties of which our software deliverable
possesses both in relation to current and future contexts if we were to continue
development.

Robustness

Robustness being the ability to cope with errors during execution, we have not
detected any fatal error such as a crash when testing and using the platform.
Largely, any error that occurs results in a no-action event. With specific reference to
the saving of changes such as assigning a ticket to another sprint within the
expanded ticket page simply resulting in no action. The other example is that of a
disappearing action, such as the creation of a ticket from the board page, in which
the ticket disappears from view after the board page is re-accessed. This is because
it is not saved to the back end here. We outline these issues in the user guides and
discussion of limitations.

In terms of inputs to ticket descriptions, exceeding the maximum description length
disallows the user from committing the description, which is an intended action.
Posting large comments allows the comment section to be scrollable such that the
entirety can be read, and providing incorrect login information provides immediate
feedback to the user that this information is incorrect without causing any non
intended error. Robustness within the development environment is ensured through

27

use of Linting (ESLint) which visibly prevents the developer from further testing a
feature until the detected issue is resolved. This greatly reduces the likelihood of
coding errors persisting throughout the design.

Security

Security is enforced within the application through use of the login feature. However,
given there is no ability to recover account information if lost or forgotten does pose
an additional risk, that is the need to store retrieval information elsewhere external to
the application, which may potentially not be secure. Access to projects is also
restricted given only one user may interact with their project, which does reduce the
risk of others meddling with or accessing potentially sensitive information.
Furthermore, we have the logout feature such that when not in use, information
cannot be accessed after logging out. No consideration to injection attacks has been
given, nor a timeout feature to prevent rapid sequential brute force login attempts.
Such an attack can occur by first attempting to identify an existing user through brute
force feedback, then a brute force password guess, elaborated on in the Appendix
under the title “Attacks”.

« Sign Up

[lE KanBanX

Username

admin

Password

Sign Out

You've signed out successfully!

User already exist!

ALREADY HAVE AN ACCOUNT? SIGN IN —

Usability

From the perspective of User Experience (UX) design principles such as inclusivity
to those with visual impairments etc, we have not given consideration. From a
simplified design perspective, we have taken the initiative to provide the user guides,
as well as grouping similar features together (ticket information in expanded ticket,
board information in board, sprints and planning on the plan page, and board history
on the history page). We have taken the care not to excessively clutter these pages
such that there is no visual overload taking place, nor the need to learn a large deal

28

in order to begin using the application. Buttons label their functionality and
dropdowns list their contents directly.

From the perspective of manipulating the Kanban board, tickets are easily draggable
and the ticket ID’s come underlined in the well known and typical hyperlink fashion to
visually indicate that this is a clickable item, and that this performs an action.

We have considered from Norman's 7 Principles in Usability (William Lay, 2022) the
following:

29

Discoverability: The ability to easily determine which action leads to the
intended result. We could have improved this through the use of tooltips, but
have attempted to increase discoverability by giving buttons a hame, keeping
design simple and consistent (conceptual model) and providing the User
Guides.

Affordances: The available/possible interactions relating an items’ properties
and the user's abilities. This has not been given much consideration, nor is it
clear exactly how to cater to this principle other than to make the Kanban
board look more like a board, and a Kanban card more like a ticket to derive
more of a physical meaning to this online version.

Constraints: Limiting the space of possible actions to reduce errors. This
principle has not been given much consideration. Considerations for a future
version of this project may allow for this by limiting Kanban card movement
across columns (only allow movement by 1 to the right at a time) such that a
card cannot be immediately considered ‘Done’ right after it has begun
progress. Another useful function would be a prompt window ‘Do you want to
finish the current sprint?’ as an intermediate stage in case this is done
erroneously.

Signifiers: Visual cues which indicate functionality. The board history date-
time selector is a signifier that improves understandability, as it looks exactly
as it's. intended functionality. The calendar to select date and the clock to
select time. We make use of the profile circle at the top right of the screen to
indicate that this item is related to actions corresponding to the user
themselves.

Feedback: An effect that occurs after an action that provides information
about the current state. We implement feedback in the login and sign up page
where incorrect information produces a response in red text to inform the user
what issue has occurred. We also provide feedback on the Kanban board as
the Kanban card is immediately located on the moved board column. Drop

down menus display as their first entry the currently selected item (such as
the current project in the project selector).

e Conceptual Model: The mental map a user has of the application. We improve
this by placing navigation in the same place with simple tabs that label their
destination, grouping similar information together and not including too many
functions on the same page.

e Mappings: Keeping similar information together. We display ticket information
in a side panel together, group ticket comments together, board columns and
displayed tickets all in the one window and on the plan page, label the
columns in which the sprint information is displayed. The login and sign up
page follow a similar format to each other to improve this mapping as well as
the conceptual model.

Scalability

The code has been developed in a modular fashion, with board related items in the
‘board’ module, specific ticket related items in the expanded ticket module, planning
related items in the plan module, sign up and login in their own modules etc. Every
major feature which is sufficiently unique has its own module in the code which
allows it to be considered somewhat separate from the rest (with the exception of
dependencies, such as adding a new field to a ticket, meaning all functionality that
will require this new field must be found and changed). This means that adding a
new major feature can be achieved by creating a new module as a container for this
new functionality, which is scalable in nature. For smaller nuanced changes, a
greater amount of effort is required, by locating all dependent instances due to this
change. Thus this code deliverable is scalable to an extent before significant
restructuring is required. Restructuring would lean more towards the form of creating
an interface for each class of related modules which require communication to
external classes in order to reduce local complexity when adding functionality. The
use of standard templates for web page design (a standard colour dictionary module
as well) has assisted with keeping the design consistent, and more templates can be
added and called upon in future if necessary.

Documentation and Maintainability

With regards to documentation, we have produced the User Guides (User and
Technical) as well as the Testing Report. However documentation has also occurred
within Github given that each commit during development is staged and uploaded to
github, there is a clear development history for each branch. During the review
process, comments are annotated to the code and feedback provided. Each of these
comments when highlighted as an issue must be manually resolved. Thus from the

30

developer side, this version history provides a strong development context to assist
with future maintenance and works. The code itself contains a sparse set of inline
comments or docstrings describing functions/methods and their use, however
modules and functions are given a descriptive name indicative of their functionality to
make it apparent what they are designed to achieve.

From the user side, maintainability simply occurs through use of the application,
manually updating project boards, adding and moving tickets etc. There is no
external source of data that is required to be updated or merged in to replace any
current working data and a static version of the software can be used. From the
technical perspective, certain elements of the software stack may be deprecated in
future such that a snapshot of the database would need to be captured and
repopulated into the newer framework if a significant software change is required.
However there is currently no provision to do so as this would be a very long term
consideration.

31

6.0 Critical Discussion

This section discusses further the project outcome and whether the team believes
we have met the acceptance criteria for this to be considered a successful project or
not, as well as the reasons why/why not. Note that we have introduced the user
acceptance criteria in Section 4.0: Methodology under the subsection ‘Initial Design’
in order to highlight the deviations introduced over the course of the semester. Here
we also introduce the initially proposed functional and nonfunctional requirements.

6.1 Functional Requirements

1.
2.

The Kanboard web application should largely support an Agile methodology.
A web interface or application software with the ability to work collaboratively
is sufficient to satisfy the outcome of this project.

The ability to view historical states of the Kanboard during some specified
time period is necessary.

The ability to set goals in the future, showing ideal future states of the board
on a specific date.

The ability to see how big a task is, that is, the weight of a task relative to the
size of the project, alternatively, it is acceptable to consider weight relative to
a subset of a project, such as an epic or feature.

The ability to assign names to tasks.

The ability to add tasks to the backlog that depends on another to be done
before being able to add it to “Doing”. This is described as pre-committing,
scheduling tasks that may be common or recurring.

6.2 Non functional Requirements

1.

32

The project sponsors are teaching staff for the FIT3161 unit and the use of
this Kanboard web application is intended to be a demonstration of the
principles taught in the FIT3161 unit, with intended use limited to this
demonstration. We do not expect a user base outside of this unit scope.
Rudimentary and basic product functionality as long as a demonstration of
improvement upon existing Kanboard applications is shown.
Implementation in any programming language the development team
chooses.

Use of a database to capture relevant data in a robust manner.

5. To be of no cost to the development team, project sponsor and end user
(such that cost analysis can be ignored in all project scoping and proposal
activities).

6.3 Analysis Of Project Outcome

With consideration to all three of the user acceptance criteria, functional and
nonfunctional criteria, we believe this project to be partially successful in that we
have been able to demonstrate an improvement in the form of that discussed in
Section 3.0: Outcomes, in conjunction with subsets of these outcomes as ‘Functional
Requirements’ 1, 2, 3, 6 and partially 7 (being able to commit to backlog). All
‘Nonfunctional’ requirements have also been met.

The extent to which requirements have been covered are not comprehensive, nor to
the level of detail that would have provided a more engaging experience with the
application. Particularly the limitation that multiple users cannot be working on the
same project board together. We would have preferred to implement the user
metrics feature as well as fixing some issues such as ticket creation and ticket
saving to work flawlessly. Porting information from front end to backend proved to be
problematic, therefore we will discuss possible changes to our tooling and
methodology that in retrospect may have assisted in achieving a stronger outcome.

6.4 Changes

As a team we did not make any major changes in regards to features but in regards
to added libraries. We added MaterialUl to our webclient which provides out of the
box Ul components which can be styled according to our needs. These Ul
components contained too much functionality that we couldn't ignore as it would go
on to save us countless hours. We did hope to implement analytics although time did
not permit. However this can be simply added with some SQL queries and formatting
the data nicely on our frontend website.

33

7.0 Conclusion

Having covered the scope of our delivered project and provided the background on
which it is based. We have discussed the project outcome within the key topics of
Section 3.0: Outcome, Section 4.0 Methodology and Section 5.0: Software
Deliverables. Our further discussion in Section 6.0: Critical Discussion included the
functional and nonfunctional requirements in our analysis.

In Section 3.0, we had outlined in detail what had been implemented and determined
that four key improvements had been achieved, these being:

- The ability to view historical states of the Kanban board.

- The allowance for planning and backlog to provide for future tasks in future
sprints.

- The ability to divide projects into sprint intervals.

- Communication via commenting ability on tickets.

The extent of these improvements came with a set of limitations and a justification of
main design decisions (based on the factors of time and skill, design complexity and
user convenience), of which for a future version of the project we could further
implement in order to enhance the product to a greater working standard.

In Section 4.0, we had dived into and explained our design methodology, both the
physical designing itself, as well as the project management methodology used,
which was largely the Kanban Agile approach. Here we identified a moderate
deviation from the initial project proposal, which was necessary in order to develop
the core improvements to a satisfactory standard rather than attempting to rush all
facets of the proposal to completion in the form of nearly bare functionality.

In section 5.0, we present our discussion on the software deliverables, where we
introduce the basic user side functionality of the application and what has been
delivered as a final result. These being the software itself, both regular user and
technical guides, and a testing report. We acknowledge that our software presents
certain software qualities such as robustness through no action events, security only
as a basic username-password and logout implementation, usability through modest
consideration to Normans’ 7 usability principles, scalability in the form of modular
design and maintainability by adhering to a static software stack not requiring
changes until later deprecation. Though we acknowledge that a more complete
version of our work would address the gaps in these qualities based on our
discussion.

34

In Section 6.0 we consider the initially proposed functional and nonfunctional
requirements and note that we had satisfied all nonfunctional requirements, while
partially satisfying functional requirements. Thus, our preference to have also
satisfied the ability to track and display user metrics would have added to the value
of our project in the perspective of the user who wishes to closely track developer
contributions. On our team's behalf, software stack changes are required in order to
provide a better product and assist with increasing the pace of development by
simplifying our approach and learning curve.

We come to the conclusion that the project has been met with a partial success due
the rudimentary and working web application delivered, which presents a set of
improvements as outlined in the project brief. While we have swapped out the
improvement detailing the ability to track user contribution with the ability to
subdivide projects into sprint intervals, this itself is a unique replacement feature.
While the team will not be implementing any further changes based on our previous
limitations after the conclusion of this semester, we will undoubtedly take forth the
lessons learned from the perspective of team management and that of project
development itself. This has yielded the benefit of allowing the team members each
to arrive at a greater level of experience and be able to reflect up and pragmatically
apply these lessons to our future endeavours.

35

8.0 Appendix

a. User Guide Contents

1: Sign Up and Login
1.1: Sign Up
1.1.1: Username
1.1.2: Password
1.1.3: Re-enter Password
1.1.4: Clicking “Sign up”:
1.2: Sign In
1.2.1: Username
1.2.2: Password
1.2.3: Forgot Password
2. Board
2.1 Navigation Panel
2.1: Projects Dropdown
2.1.1: New Project
2.1.1.1: Title Entry
2.1.1.2: Description
2.1.1.3: Cancel Button
2.1.1.4: Create Project Button
2.1.2: Board Tab
2.1.3: Plan Tab
2.1.4: Track Tab
2.1.5: History Tab
2.1.6: Profile Icon
2.2: Board Information and Ticket Creator
2.2.1: Board Information
2.2.2: Ticket Creator
2.2.3: Select Type
2.2.4: Name Ticket
2.2.5: Advanced
2.2.6: Add
2.3: Kanban Board
2.3.1: Tickets
2.3.1.2: Ticket Name
2.3.1.3: Ticket Description
2.3.1.4: Draggable
3. Plan

36

©O© 00 0 NN O O

10
10
10
11
11
12
12
13
13
13
13
13
13
14
14
14
15
15
15
15
15
16
16
17
17
17
18
18
19

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.30j0zll
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1fob9te
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1maye4u0db6d
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.21eyqp9w8kqc
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3znysh7
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zczl5c9tp655
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.a4hfoytyiocw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.7tc7tvzicgvn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lhoybbb53ybz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ujfss46yp6rn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.mf2we1wvuhs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xwlfpqkyofvs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.w9ys3bo7at9f
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.31rid3i4wbmv
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zcqcxxg3l6m0
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.qlg8tdu2sc62
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ry7uxmpxqkjo
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.9xvqsrazugjq
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xzud82hnn1kw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.eg8d88t0oibz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.bsqb2n3hd2xp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.83eqrxcppqui
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.w801avw3f1z1
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.xfwtcziet4la
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rihwkjvvmssk
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.6aj37ex334n9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1p94b6xew43r
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rh5kn0y240ke
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yuvz0oe2bxa
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.75r9jz3tavsi
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.b5f2zii79pop
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rbuor6j1nmxx
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.vbsfof4l2n0a
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8rt7918jmpvn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ct5talo1irpz

3.1: Sprint Information and Selector

3.1.1: Sprint Information
3.1.2: Sprint Selector

3.2: Sprint Creation and Completion

3.2.1: Create new sprint
3.2.2: Finish Current Sprint
3.3: Ticket Creation
3.4.1: ID Header
3.4.2: Title Header
3.4.3: Owner id Header
3.4.4: Status Header
3.4.5: Sprint id Header
3.4.6: Feature id Header
3.4.7: Created By id Header
4. Track
5. History
5.1: Kanban Board
5.2: Date-Time Selector
5.2.1: Reset Button
5.2.2: Date-Time Selector
5.2.2.1: Date Selection
5.2.2.2: Time Selection
6. Ticket
6.1: Description
6.1.1: Description Header
6.1.2: Description Textbox
6.1.3: Character Counter
6.2: Comments
6.2.1: Comments Header
6.2.2: Comments Display Box
6.2.3: Write Comment Box
6.2.4: Post Button
6.3: Information
6.3.1: Information Header
6.3.2: Created by
6.3.3: Assigned To
6.3.4: Feature
6.3.5: Assigned Sprint
6.3.6: Status
6.3.7: Save Changes
7. Exiting The Application

37

19
19
20
20
20
20
21
21
21
22
22
22
22
22
22
22
23
23
24
24
24
24
26
26
26
27
27
27
27
27
28
28
28
29
29
29
29
29
29
30
31

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.r2278377075
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8k0pd2b088na
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.55m4016uamh9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.liq04pj8gl47
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.d6nmm04e14ge
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1hvaicv0qc38
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.dw6a3tvkp8a3
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lx8w0p3ksa9n
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.d4gx196tul5z
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.8xp7w3qzthz4
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.kc41g6nap294
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.4oqcu8w8nx32
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.s7h1eeoio3ed
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.mepjgpbkwpfp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.z0dyhijjx70
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.buxd4lgf97i6
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.g5flhce0rd3o
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.qmj14ha80qpk
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ba4j87jicu9s
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.iooitgw35q4z
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2rsk37bmkidy
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.it5myy8ga023
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.j9lm8nvbdtgz
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.kxylhzuxlc5b
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.58ycuk96remh
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.vajj4nukq8gs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.loc3iemhojet
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yidbfp2c6ytd
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.h5o6uzqkhgaf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.rg5dyiasjrrs
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.s26xqzvies0b
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.5u93xtn9ymcf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.bkr8d5ux7qkd
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.jx58rxe2u6fo
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.fqtnekfdi7qn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.e7p2c9tzgkxw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.ypnnnb1sggra
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.l9n77eogrxi8
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.zaaot34jau1m
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.yu1ijldvb8vn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2a1v0rl5am4w

8: Usage Limitations

Technical Guide Contents:

1: Branching

Here will be displayed how to branch from master and work on stories and
tasks.

1.1: Create New Branch From Command Line
1.2: Committing And Pushing
2: Setting Up The Development Environment
2.1: Install The Following
2.2: Setting Up WSL
2.3: Windows Terminal
2.4: Creating SSH Keys For Terminal
2.5: Cloning The Repository
2.6: Setting Up Docker
2.7: Installing And Setting Up Intellij
2.8: Vscode Extensions
2.9: Npm And Node
2.10: JDK
2.11: Installing React Packages
3: Building And Running
3.1: Building The Java Api Server
3.2: Starting The Api Server
3.3: Building The Website
3.4: Spring Project Built From

b. Code Sample

Here we have chosen a subset of our project code as a sample in order to

31

32

32
32
32
32
33
33
34
34
34
35
35
36
37
37
37
37
37
38
38

demonstrate project requirements being fulfilled. We provide the code, then explain

as follows:

38

https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.pncmzla2pn8k
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.26in1rg
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.35nkun2
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.44sinio
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.z337ya
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1y810tw
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1njTJYcShl9DDHiu7jvEekbKJ7PHdxUYU/edit#heading=h.1ci93xb

// BasicDateTimePicker Module

// get date-time and DateTime picker widget imports

import React, { useState, useEffect } from 'react';

import { AdapterDayjs } from '@mui/x-date-pickers/AdapterDayijs’;

import { LocalizationProvider } from '@mui/x-date-pickers/LocalizationProvider';
import { renderTimeViewClock } from '@mui/x-date-pickers/timeViewRenderers';
import { MobileDateTimePicker } from '@mui/x-date-pickers’';

import dayjs, { Dayjs } from 'dayjs';

import 'dayjs/locale/en-au';

// Standardised interface of date time to send to for historical data retrieval
interface DateTimeProps {

placeholderText?: string;

onClose?: (newValue?: Date) => void;

onChange?: (newValue?: Date) => void;

defaultValue?: Date;

export function BasicDateTimePicker ({ placeholderText, onClose, defaultValue }: DateTimeProps) {
const [value, setValue] = useState<Dayjs | null>(dayjs(defaultvValue)):;
const [windowClosed, setwindowClosed] = useState(false);

usekEffect (() => {

if (!windowClosed) {
return;

}

const timeout = setTimeout (() => {
if (value && onClose) onClose(value.toDate());
setwindowClosed (false) ;

Yoo 1)

// Give it a time out to make sure when user click on cancel, mui have enough time to

// change the date back to previous

return () => clearTimeout (timeout) ;

39

40

by

[windowClosed, value, onClose]);
// Run above code immediately after windowsClosed/value/onClose updated

return (

) ;

<LocalizationProvider dateAdapter={AdapterDayjs} adapterLocale="en-au">

<MobileDateTimePicker
onClose={ () => {
if (onClose) {
setwindowClosed (true) ;

}

H}
label={placeholderText}

value={value}

viewRenderers={ {
hours: renderTimeViewClock,

minutes: renderTimeViewClock,
seconds: renderTimeViewClock,
}}
slotProps={{ textField: { size: 'small' } }}
onChange={ (newValue) => {
setValue (newValue) ;
setwindowClosed (false) ;
}}
maxDateTime={dayjs () }
closeOnSelect={false}
/>

</LocalizationProvider>

// BoardHistoryModule

import React from 'react';

import '../styles.scss';

import { KanbanBoard } from '@/features/KanbanBoard';

// Allow Kanban Board to only view ticket data.
export const BoardHistory = () => {

return <KanbanBoard viewOnly={true} />;

// set KanbanBoard in view only (history) mode

}i

41

// KanbanBoard Module
// .. code excerpt (larger module)
export const KanbanBoard = ({ viewOnly = false }: KanbanBoardProps) => {
const informationSlice = useAppSelector ((state) => state.information);
if (!informationSlice.currentProject.projectId) return <></>;
const [isLoading, setIsLoading] = useState<boolean>(false);
const [tickets, setTickets] = useState<FullTicket[]>([]1):;
const [boardHistoryTime, setBoardHistoryTime] = useState<Date>(new Date());
const [sprintInfo, setSprintInfo] = useState<FullSprint>({});

const [getAllTicketsForActiveSprintQuery, currentSprintTicketsResult, lastPromiseInfo] =
uselazyGetAllTicketsForActiveSprintQuery() ;
const [getAllTicketsForhistory, historyTicketsResult, lastHistoryPromiseInfo] =
uselLazyGetBoardAtTimeQuery () ;
const [GetActiveSprint, sprintInfoResult, lastSprintPromiseInfo] =
uselazyGetActiveSprintQuery () ;

const [updateTicketPost, { isLoading: isLoading }] = useUpdateTicketMutation();
const [columns, setColumns] = useState<kanbanBoardColumn[]>([])
useEffect (() => {

if (isLoading || !tickets) return;

setColumns ([

{ id: 'TODO', name: 'To Do', tickets: filterByColumn (tickets, 'TODO') 1},
{ id: 'PROGRESS', name: 'Progress', tickets: filterByColumn (tickets, 'PROGRESS') 1},
{ id: 'COMPLETED', name: 'Completed', tickets: filterByColumn (tickets,
'COMPLETED"'") 1},
{ id: 'ACCEPTED', name: 'Accepted', tickets: filterByColumn (tickets, 'ACCEPTED') 1},
1)
}, [tickets]);
// Load all the tickets
useEffect (() => {
if (!informationSlice.currentProject.projectlId) return;

42

43

setIsLoading (true);
if (viewOnly) {
// View only (history) mode, which is used in History
void getAllTicketsForhistory ({
projectId: informationSlice.currentProject.projectld,
atUtcDatetime: boardHistoryTime.toUTCString(),
}) .then ((data) => {
setTickets (data.data as FullTicket[]):;
setIsLoading (false);
1)
} else {
// Normal mode, which is used in board page
void getAllTicketsForActiveSprintQuery ({
projectId: informationSlice.currentProject.projectld,
}) .then ((data) => {
setTickets (data.data as FullTicket][]);
setIsLoading (false);
1)
}

}, [boardHistoryTime, sprintInfol]);
// Run code above immediately once board time (History) or sprint

useEffect (() => {
if (!informationSlice.currentProject.projectlId) return;
void GetActiveSprint ({
projectId: informationSlice.currentProject.projectld,
})
.unwrap ()
.then ((data) => setSprintInfo(data)):;
}, [informationSlice.currentProject.projectId])
// Run code above immediately once project have changed

(Plan)

changed

The date-time widget allows for selection of date-time to shuttle to the backend for
later retrieval, such that when calling upon the board history module, the kanban
board module can take the view only flag and then take a slice of the board
information (related to current project and sprint) and display it in the standard
fashion that the regular board display would do, except that we have invoked the
view only functionality in KanbanBoard. Now tickets in this information slice are
displayed and presented statically and cannot be moved/interacted with.

44

c. Attacks

Attacks can be run by first brute forcing username through the sign up page:
Brute Force:

Automate the process of entering in usernames from Y *{alphanum} (Maheshwari et
al., 2019, p.31). This defines the process of testing all combinations of inputs from
alphanumeric characters. Then scraping feedback until “User already exists” is
found.

Upon determining this another brute force of password from Y. *{alphanum} with the
given username can be performed until successful login. However, do note that
since this application is not truly online collaborative, this has to be performed on a
specific machine which requires direct access. Thus it is not likely to occur. Instead
of a pure brute force password tester, one could utilise a password database to try
more likely options in a more reasonable amount of time.

SQL Injection:

This process can be found readily both online and through academic materials. It
involves within simple unguarded systems running the following into the username or
password box:

Select id from users where username=’username’ and

password='password’ or 1=1--+

(Authentication Bypass Using SQL Injection on Login Page, 2020)

45

Q.0 References

Beltrdo, A. C., de Souza, B. P., Santos, P. S. M., & Travassos, G. H. (2018). On the
benefits and challenges of using kanban in software engineering: A structured
synthesis study. Journal of Software Engineering Research and Development,
6(1), 11. https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1

GeeksforGeeks. (2020, November 14). Authentication Bypass using SQL Injection
on Login Page. https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-
USING-SQL-INJECTION-ON-LOGIN-PAGE/

Hiranabe, K. (2008). Kanban applied to software development: From agile to lean.
Retrieved from http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Ikonen, M., Abrahamsson, P., Fagerholm, F., Kettunen, P., & Pirinen, E. (2011). On
the impact of kanban on software project work: An empirical case study
investigation. In 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA) (pp. 3-10). IEEE.
https://ieeexplore.ieee.org/document/5773404

Kamal, F (2020). Literature Survey on KANBAN: Opportunities and Challenges.
https://www.researchgate.net/publication/347586912 Literature Survey on K
ANBAN Opportunities and Challenges

Kniberg, H. (2009). Kanban vs. Scrum: How to make the most of both. Retrieved
from http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf

Lay, W. (2022). Notes On Norman's Principles: [PDF Notes]. Provided by Monash
University. FIT3175 Usability.

Llorens, B., & Vifioles-Cebolla, R. (2020). The influence of the use of project
management tools and techniques on the achieved success. In Proceedings of
the International Conference on Project Management (ICPM 2020), Lecture
Notes in Management Science (pp. 157-165). Springer.
https://link.springer.com/chapter/10.1007/978-3-030-54410-2 12

Maheshwari, A., Smid, M., & Canada, O. (2019). Introduction to Theory of
Computation.
https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf

Pandey, A. (2020, April 26). 7 Best Project Management Tools. Gale Business
Insights: Essentials. Retrieved from
https://link.gale.com/apps/doc/A622079509/CDB?u=monashé&sid=bookmark-
CDBé&xid=605bd8a0

46

https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1
https://jserd.springeropen.com/articles/10.1186/s40411-018-0057-1
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
https://www.geeksforgeeks.org/AUTHENTICATION-BYPASS-USING-SQL-INJECTION-ON-LOGIN-PAGE/
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
https://ieeexplore.ieee.org/document/5773404
https://ieeexplore.ieee.org/document/5773404
https://ieeexplore.ieee.org/document/5773404
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
https://www.researchgate.net/publication/347586912_Literature_Survey_on_KANBAN_Opportunities_and_Challenges
http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf
http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://link.springer.com/chapter/10.1007/978-3-030-54410-2_12
https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0
https://link.gale.com/apps/doc/A622079509/CDB?u=monash&sid=bookmark-CDB&xid=605bd8a0

