Technical Design Document
for BlockoutShooter

Jiangye Song

Technical Design Document for BlockoutShooter Jiangye Song

Contents
PrOJECT OVEIVIBW ... s 4
Game MeChaniCs OVEIVIEW.......ciiiiiiiiiiiiiiiceiie et 4
Target PlatfOorm .o s 4
GaAME MECNANICS. ..ttt et s e et 5
LI D 1= = - o 5
MovemMENT MECNANICS......cciiuiiiiiiiiiiiee e e 6
CONTIONS ..ttt ettt et e st e e s bt e e st e e e b e e e saneesenbeeenanee s 6
Additional Gameplay MechaniC 1......cccooeeiiiiiiiciieee e 8
MEChANIC OVEIVIEW ..ottt 8
Mechanic Description / FUNCEIONAIILYccoeevviiiiiiiecece e 8
SEQUENCE DIABIamM ..cccciiiiiiiiiiiiiiiiiiiiiteeteteeeteerteteteeteerereretarerererereataerererererererererarererenns 9
Additional Gameplay MechaniC 2uuviireieei e 10
MECHANIC OVEIVIEW ..ottt ettt e e e e e anes 10
Mechanic Description / FUNCEIONAlILYcccoevveeiiiiieecee e 10
RY=To 11T a oI D= =4 -0 [P PPPPPPPRE 12
Y TUT LT o] = 1= PSP 12
Game State & Player State ...t e e e e e aaes 12
GAME STATE et 12
[R) =1 U 13
(01 T 20T o] [or=1 f [0 o VOSSP UU R UPUUPUPRRRR 14
Remote Procedure Calls.........cooiiiiiiiiiieeeeeeeeee e 16
Physics CONSEraiNt 1 - LEVETueeiiiiieeee ettt e e e e eerrer e e e e e e e aeaeeeeaeeean 18
Overview Of INTEracCtioNccocuiiiierieeeeee e e 18
oY H=T = Tord o] o I B L=ETof g1 o o] o SR 18
How the INteraction WOIKSccoiiiiiiiiiiiiieeeeeceeceeee e 18
Inspiration / REference IMagesccveecveeeieie ettt e e 18
IN-ENGINE SCrEENSNOTS cooeiiiiieiiiieieee et ee s rer e e e e e e e narreeeees 19
Properties and ValUES.........ccueiiiiieie ettt e e e e e e 19
Diagram of INteraction ... 19
Physics CONSEIAiNT 2 = TIrEE....cccuvrreeeieeeeeceiteeeeee e e e eeectrrre e e e e e e e seaabrereeeeeesesnnbrreeeeeeeeens 19
OVerview Of INTEraCtioNceeuiereerieeeeee e e 20

Page 1 of 43

Technical Design Document for BlockoutShooter Jiangye Song

(oY H=T = Tord o] o I B L=Y ol g1 o) 1 o] o NN 20
How the INteraction WOIKScooiiiiiiiiiiiieieeeeeee e 20
Inspiration / REference IMagEescecvvecuiieiieiie ettt e eaae e 20
IN-ENGINE SCrE@NSOLS coeeiiiiieee e e e 20
Properties and ValUES.......c.cceiiiiieiiee et e st e e e e 20
Diagram Of INtEractionoioiciiiii i e 21

Physics Constraint 3 - PressurePlate.......cc.evveeeeeii e 21

OVerview Of INTEracCtioNccouiiieerieeieee et 21

INtEraction DESCIIPTION ... s 21
How the INteraction WOIKScooiiiiiiiiiiieeeeeeeee e 21
Inspiration / REference IMagesccveecveeeciie ettt et 21
IN-ENGINE SCrE@NSNOLS ..veviiee ettt e e e e 22
Properties and ValUES.........cueiiiiiie ittt e e e s 22
Diagram of INteraction ... 22

Advanced Niagara Particle Effect.......cccviiiiiii e 23

Niagara Particle Effect - NS_MUShoooiiiiiiii e 23
OVErVIEW Of EffECE ..eeeuiiiiieiieee e 23
Effect DeSCriPiONvvieeeieeee e e e s e e e e anaeas 23
INSpiration / REference IMages:cccuveicveeeieie ettt ettt e 24

Niagara System / Emitters BreakdoWnc..cooveiiiiiieciiiiiieeeeceee e 25

C++ Parameters Breakdown.........c.oooiiiiiiiiiiiiiieeeeee e 26

Destruction Aware Niagara Particle Effect c.....oiiiiveicciiieeeieeee e 27

Niagara Particle Effect — NS_TrailingPi€Cecuuvveeiieiecireeeeee e 27
OVervieW Of EFfECt ...cocuviiiiiiiiiieeee e 27
53 {Tot D T=Y Yol g T'o o o [27

Collision Enabled Niagara Particle Effect.......cccoivveeiieiiiicciiiieeeee e, 29

Niagara Particle Effect — NS_Bathtub............cooviiiiir e, 29
OVErVIEW Of EFfECt ..ooiiiiiiiiiieee e 29
| A {<To DY 1o] o] o PP 29
CH++ Interaction DesCriptioN......coceviiiiieee e e e e e e e eannaes 30

Shader EffECES ...eiiiiiiiiie e 31

Shader Effect 1 — M _BUBDIE ..ot e 31

OVErVIEW Of EFfECT ..oouiiiiiieece e 31

Page 2 of 43

Technical Design Document for BlockoutShooter Jiangye Song

EffeCt DESCIIPTION. .. .vii ittt ettt e et e et e e eve e e enree e 31

[\ ToTo Lo C =1 o] o [P URUPPRN 32
Shader Effect 2 - M_Plate.......ueii et 33
Overview Of EffeCt ..o 33
EffeCt DESCIIPTION. .. .vii ittt et e e e re e e eave e e enree e 33

[\ FoTo Lo C =1 o] o [P PUPURPRN 34
POSt Processing EffECtsuciiiciiieiciee e 35
Local Post Processing Effect = MP_Death.......ccccceviiiiiiiiniiiiee e 35
Overview Of EffeCt ..o 35
EffeCt DESCIIPTION. .. .vii ittt ettt et e e eave e e earee e 35
Inspiration / REference IMages:ccveicieeeiiie ettt et 35
(VLo 0 (ST =1 o o 1 36
Global Post Processing EffeCt......ccuuiieiiiiiiiiiiiee e 37
OVverview Of EffECt ..o 37
EffeCt DESCIIPTION. .. .vii ittt ettt e e eve e e earee e 37

[\ ToTo Lo €= o] o ISR UPURPRRRRIN 38
OptiMISAtioN .o, 39
Statistics AUItOr REPOIT ..uvveeeiee ittt ee e rrere e e e e e e esnbrraeeeeeeeeeeannns 39
ANAIYSIS ceeieiiie et e e e e e e e e e e e e — e raeeeeeeeaanrrrareaaaaaaan 39
SOIUTION .ttt s 39
GPU Profiler REPOIT ... ittt e e ee st e e e e e e e sesanbrsaeeeeeeeeennnnnns 40
UNreal INSiZhts REPOI..cccii ittt e e ree e e e e e e eaar e 40
TimiNgG SECLIONS REPOIT ..vvviiiiiiiiiiiiiiiiiieiittiiitirrerrererrrerrrrrrrrrrrrrrrrerrr 40
TIMINGS SECHION T..eiiiiie et eaes 41
TIMINGS SECHION 2 ..ot e e et eeenes 42

Page 3 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Project Overview

Blockout Shooter is an engaging 1 vs 1, third-person shooter game designed for PC.
This game introduces a unique and colorful mechanics to the traditional shooter
genre, making it interesting to a wide range of players. The central mechanic of
Blockout Shooter revolves around color-matching and strategic gameplay within a
dynamic arena filled with colorable blocks.

Game Mechanics Overview

Blockout Shooter introduces an innovative blend of color-matching combat and
strategic gameplay in a 2-player, third-person shooter experience. Players are
assigned specific colors, and they can only use their weapon when their standing on
blocks that have the same color with them (or uncolored blocks). Additionally,
power-ups can be acquired through defeating opponents or pushing the trees,
enhancing the overall depth and excitement of the gameplay. These mechanics
combine to create a dynamic and engaging multiplayer experience.

Target Platform

The primary target platform for Blockout Shooter is PC, leveraging the precision of
mouse and keyboard controls for an optimal gaming experience. If pursued, mobile
platform can be a target platform because touch controls can be applied on TPS. On
mobile platforms, the game will utilize intuitive touch controls for aiming and
movement, ensuring accessibility and engagement. However, target platform will
not include consoles because it will be hard to aim with a controller, and the
gameplay did not optimize for the controllers.

Page 4 of 43

Technical Design Document for BlockoutShooter

Game Mechanics
UML Diagram

This game used the template of Third Person as a starting point. Classes provided by unreal and do not contain any modification will not show its attributes and functions in this UML, shows as a simple class shape.

This diagram is created via Lucidchart.

(Gamenodee:

WAL BiockouShooteGametiode.

USkeletafeshConponent

Jiangye Song

URsevorkLauncherComponent)

+ AtBch(AAL_BlockouiShocierCharacter PckupCharacienvod

UsaftCompanent

:uwu':ua/mﬂvmmk’y voit
#BeginPlay(): ol

 CelmarepcaodropsTATay<FLimePpanyod
Outeimerops)constva

NS_Blaster UNiagarasyster®

-

ot

oid
Rt Sodosieoerhuacer

FHiResuls HiResul):
+ FaelnDiecion(cont Wzmov& StooDirecion): voil

#BeginPlay)- void

+Soupronstpton i, o .t sTR TP v

+ PlayClamEfec(: v
Genehle?we/upﬂ ea
#BeginPlay) o

+ SpannSplaefect) v

o
MulicasBlaste(FYector PariceVelociy)vod
+BeginPlay(vod

+ Rope:UCat

PGPy Conponen:
= UCableComponent”

+ AvreckingBall)
#BoginPlay(vod
+ Tick{oat DetaTme vid

e UamComonen
« Ongntocaton:
* bisglockng:

S
#BeginPly(): voi
e et v

+ Achate()

Veegnria

"~ Aoungaae)

voa

50 v
ekt etatme): via

aesbepoae vt

+ bAlowAtackboo
bFreezeConirotbool

+ primaryDetachActon UnpuAcion"
- PrpGiss TSudssO<APove
NS Deattparce Uagare

+ DeathMateial Uaterial®
+Denenianance OlaralnsonceOpari:
+ Drowniatrial UNiateril

+TeamTwoScored{in Amount) voi

+ PlayerScored{APlayerState* PlayerSiate) void

+ RestanPlayer(APlyerSiat’ PlayerStie)void

£ GePleTeamuntaePie i
PlayrSiate)inc

+ SetanColu APy

PlayorSiate) FLinearCol

* SeSeha o(AD\ayevS\a\e Playersate)oat

+Begoe

+ WeaponConlDownTmeElapsed:foat
+ Drowning bool

+ GameSiateAShocterGameSate’

+ Heldvieapon UtemComporent*

+ DeathPartclOfset FVector

+ IvwinerablyTmer FTimerHande

+ RespannTimer FTimerhande

+ DefauMateralnstanceOne Untteranerace”

+ DefauitMaterilnsance T Ulateriltetace*
+blsPlayerinvinerale bool

AL
+ DealDamagel(Damage)void

+ Dealea(t Healvid
+ AdthasHeaih(loat Amoun) void

+ Jomp{vod
* Sopumngovod

+ SenverFieWezpon{ vid
* SoDeuciespon
e N ———
SpaumRoatonvol
+Tik(foat DeiaSeconds) vod

o max-memrg%xams[mx DesiecTeamhumber)vid
+ DeathParicis()void

i —

const Flectord. SimuatonPosidonOfel vo

 AdPlayerStato(APlayersiate* PlayerSite) void

A
CAAL 1
UtenGonponent
+ Coddoun st
+ BascOamagerloat
+ OumngCharacer: AA BlockouShoterCharactr
TeT— RapaieRodel Roaverln AComratieonk ACotecabe Levr eaponeatom Aiee ASpamiocaton APressucPe Aeienok
+ Atachy
+N5_Oye: UNiagarasystem Hchaacan g + Rocketesh. UStlcesnComponent” + Hithor USphereCompnent + Toantiumber + TreaBase UstaileshComparent e s compore
+ GameStte: AShooerGemeStte* Celiinerepiaeprp(Traysifeimepropny>s + ExlosionRadius USphereComponent + PowerUptesh:UStaeshCampenent atiterace Uatealnriace” . : * Exposenteght Aeisysemicite
P + Radialoft URadal o O Ui Canper M o +Soan * TresUStatceshCamponent —— +PrsisConsran; UPhysesConstairConponen Clrenanage fo Acharacer Gamesatesa APapersite
uewo Deiachgno + Cullngied: UculingFei e +Blockesn UStachieshConpore: . o e Mownggarers: Ty Atlounggrer L CummChaate Mo
+ YcubConporeri + Use{od Radialvector URadalector co\m Fuine * Camesine: AShooercameSiae « AColectabe(J— MU einPly(o + Movngearers: Lt
. ;:{c S P - + Explosknveloiy: oat omm,a UTS— e e T Ao TSt
.Q,M",‘u‘"’ DocoustoaTTse” P 10 + URoskataurcherComporent) e UeoRORTENCI O e o o) et s NS_Pate hiagrasysen: ety toa
+ CureniDamage: * S o . e) e N % Lo Wagarassinr -
; Samelactec od eagmpmConex U © OungCoaramr. A et o OnegnOverap(UPrimitveComp R NS Dk Ny AL BlockoushooCharader ShooGamese A%h(x)\svv\ayrﬂwf
P vo Pt Uit LS e Ohiagaasysen prr— Componen: Ao Ovrsc : . " #BegnPlavid 2T +Aprsscpaie) it Korooucamesiae: v =
NS + atnstance: UllaterlnsiancaDynamic e oo P e L SetfemeRepleaedprops(TATay<FLeimePopery> + TalCobr. FLnearColr : Sk
— / o bclbFomSeep cons iesia e ercer, UrmveConpeont OveCanporen, 32 g, b FollwCamera UCameraComponent” T ot
N ecor Sherseornics Begnpiy(vo Ottt PrinaveCaon o b bool +BoColison UBoxComporent plosonRadis USphereComporent” e e Jeamonepens
- ‘ omSeep, const FHiResut D iy catiapongContoxtUnputappingCorie eanTuopen + Clenthiilze(AContoler
(AachiAAL o EndomiapUPrmeConsonrt Svtippedconpo el N ‘E‘ et Sl SumphcionUinpuActor .smmnc«naus rAwAsuamomuaw» Pt
UFireworkLauncherCompanent UninerabityPotion + Detach(jvod + AProjectieRocket) + APonerUp() OutfetmeProps) const: voxd _— Otherctor, UPrmiveComponent” OtherCompanen, wz?nmernnny\nnexywm e R e fe—— orconUnascion + TeamOne
+ Use(vod + MucasExplde() vod +omsegnorpuPrmeCopone: #BeginPlay): void Do o s sion cor P sy o gl UCulingF : kActon Unputicion” *TeamTvasear: nt
SpaunOfset: uecor + Hologramateralnsiance Udterilmerice” * Senrspaunriocei)vod i void P SpannRotaion) + SenverEaplode): v Velciyamouno + BlstrExpcsionClas TSubclssOfABlstrExpiosr> e TAay<AShonterPayerSal>
e e v BegnPiay)void ko bt + Senertal) vod + asnchartied) indmau + ScormigeCiass ToubclassOlUScordget + TeanTwo: TAay<ASheoterPlyerState'>
PrimanyFeacion: Uiou po— ool bFamSmep,const FHResuA SieepResul): void [—— # BegnPlay)void : Transtorvoid + axesinoat + GameTim
FrewiCiass: TSubcassOlcAHeworc e . Tmessaichestompe e Guteimerope) ons vad Caronsenthtoat
UrmveCemparene: O Comporen: ek ma, o O fetmeProps) const: +Poweront + AShooterGamestate)
et *aierint
amOneScored(nt Anoun)void
d

M

Uscoremidget

+ AdTwoPercentage(bool bOverde] ol

TeamOnePerceniage: UTexBlock:

7 TeanTuopercentage: UTextlock:
GameTime: UTextiock:
Timelaming: UTexglock”

GameSate: AShooterGameSiate”

NatveConsinct):void
Tk cors Fosomeyd

iy EascPuiceDai O UNagunS e NagaaSsen,

+ GetCameraBoom() constUSpringArmComponent
GetFolowCamera(const UCameraComponent”
* Sativinersin e~
ablevuerabity() o
L Semaroabanainyid
+ UpdatePPEComal(UMateral ateil, float Weigh) void
§ DdePPEinsContUiralnsance ol fo
vod
N unﬂalewlzna/s(Janaumm«ce et
 ortonsFrpuscion ey
Look(constFinput onod
SetupPlayernn xtomnnnsm{uhw;ncmwxmwn'
PryempiComponen o
#BeanPly)vod

MyGeor
void

Page 5 0f 43

https://www.lucidchart.com/

Technical Design Document for BlockoutShooter Jiangye Song

Movement Mechanics

The movement mechanics of the players did not change in compared to original
Unreal Engine’s template in normal case. The gravity scale is 1.75, the maximum
walk speed is 500 cm/s, the max jump count is 1, and the max step height is 45.0 cm.
These defaults values are already good enough to create a fair and enjoyable arena.

However, if the player is on an enemy-colored colorable block, they start to drown.
Their maximum walking speed will decrease to 200 cm/s, and the gravity scale raises
to 5. This is aimed to give the player a penalty to tell player the importance of dyeing
blocks and tell player to avoid the enemy-colored colorable blocks as much as
possible.

Player characters can step on all the static meshes, geometric collection objects
(including the wall window and fragile obstacles) and physical-constrain enabled
actors (including lever, wrecking ball, and pressure plate) in the map, and they
cannot step on item components, collectables, particle effect, etc. Player characters
can step on powerups, but the powerups will be consumed when player characters
touches their hitboxes.

Colorable blocks collision profile is made as overlap all in the game and player
characters are not actually walking on it. Instead, the player characters are stepping
on the meshes below the colorable blocks (so colorable block is more like a tile).

Controls
Mapping Action Description Keyboard Modifiers
Control Binding
Walking Move Used to move the w Swizzle Input
Mapping Forward player forward Up Axis Values
relative to the (YX2)
camera direction
Move Left Used to move the A Negate (XYZ)
player left Left
relative to the
camera direction
Move Used to move the S Swizzle Input
Backward player backward Down Axis Values
relative to the (YX2)
camera direction Negate (XY2)
Move Right Used to move the D None
player right Right
relative to the
camera direction
Jumping Jump Used to make the Space None
VBI04 StopJumpin player jump
g
Looking Look Used to rotate Mouse Negate(Y)
Mapping the follow camera Movement

of the player

Page 6 of 43

Technical Design Document for BlockoutShooter

Firing Fire Weapon
Mapping
Detach Detach
Mapping Weapon
Toggle
Fullscreen

Used to use the
weapon that
player is currently
holding

Remove the Q
weapon that
player is currently
holding
Used to switch F11
the game window
between
Fullscreen and
windowed

MouseleftClick

Movement input will be translated into a 2D vector referred to as
"MovementVector" within the Unreal Engine. Unreal will initially determine the
forward direction based on the camera rotation. Then, it will calculate both the right
and forward directions through the GetUnitAxis function. These directions will be
combined with the MovementVector values to dictate the character's movement.

Similarly, aiming input will be transformed into a 2D vector known as

Jiangye Song

None

None

N/A

"LookAxisVector." Unreal Engine will directly apply the values of this vector to the
controller, enabling precise control over the player's aim within the game.

The input of jumping will set bPressedJump to true, it will then start counting the
jump key hold time which is used to decide the jump height of the player. Eventually,
the DoJump function in CheckJumplnput will perform the jump.

When the player presses the weapon fire button, FireWeapon function will be called.
If the player is holding a weapon and they’re allowed to attack, it will then call the

Use function of that weapon.

Page 7 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Additional Gameplay Mechanic 1

The Splatoon-like colorable blocks.

Mechanic Overview

The Colorable Block mechanic is a fundamental element of Blockout Shooter, and
the inspiration is from Splatoon by Nintendo. In the arena, players can use their
weapons to unleash color blasts that dye colorable blocks within the game world to
match their assigned color. These colorable blocks play a crucial role in shaping the
battlefield and influencing player strategy.

Mechanic Description / Functionality

Colorable blocks serve as both a tactical advantage and a potential obstacle. These
blocks initially start as uncolored and won't affect any player’s side. When a player
uses their weapon, the weapon will collision enabled particles, and each of the
particle create a sphere collision with a radius of 10, which will dye all the colorable
blocks it collided to the player's assigned color (blue for team one and red for team
two for now) by calling UpdateColor function from them. While a player is colliding
with the colorable block, the block will call the UpdateDrowningStatus of the player
to notify player to check whether the color is their enemy's color. The player will set
drowning status to themselves if they are on an enemy-colored colorable block and
will remove (set to false) the drowning status if they are not. The movement values
will be changed whilst the drowning status is updated, the exact value of the
changes is described in Movement Mechanics.

ST

Plater Claim the weapon Plater use the weapon to splatE

e
A\

The opponent start to
drown when standing on it

The particles dyed the colorable blocks

Page 8 of 43

Technical Design Document for BlockoutShooter

Sequence Diagram

Change color of colorable block
Change color of colorable block

Jiangye Song

Player BlockoutShooterCharacter HeldWeapon NiagaraFunctionLibrary ColorableBlock
T p = T =
| |
| Mouse Left Click |

|

:
: alt) [if HeldWeapon exist and Control not Freezed] i
| I
| HeldWeapon-=lUse N |
| I

y
: alt) [if WeaponCoolDownTimeElapsed > CoolDown] i
| |
| ServerBonk/Explode |
| |
| ——
|
| SpawnSplatEffect |
| Lt
| OwningChar,

vningCharacter
[N (N ittt »
|
| collide with o
| >
: alt [collided with any actor]
|
| » received by character
!
VErD W S
ServerSpavwnExplosion
: SweepMultiByChannel :
alt [actors that hit the shape is a colorable block]
UpdateTeamNumber
P
[
: WeaponCoolDownTimeElasped=0 :
]

| |
| |
| f
| |
| L L | T
1 1

Page 9 of 43

Technical Design Document for BlockoutShooter

Set player drown status

Set player drown status

BlockoutShoot

erCharacter ColorableBlock

L

OnBeginCverlap

L

A 4

» UpdateDrowningStatus(TeamNum)

-

at J|[

f drowning]

opt)

[if TeamNum == Player Team Number or TeamNum == -1]

set Drowning to false

update walking attributes to normal values

i

if not drowning]

opt)

[if TeamNum != Player Team Number and TeamMNum !=-1]

set Drowning to true

update walking attributes to drowned values

Additional Gameplay

Mechanic 2

Power-ups that change bullets into different types.

Mechanic Overview

Jiangye Song

The Power-Up mechanic in Blockout Shooter draws inspiration from classic arcade
games like Bomberman, introducing a variety of power-up items to enhance player

abilities.

These power-ups are represented by mushroom within the Blockout Shooter game,
each offering unique benefits when collected by players. However, once the player

died, they lose all the power

-ups they claimed on respawn!

Mechanic Description / Functionality
Blockout Shooter features different types of power-ups, each denoted by a distinct

mushroom color:

e Red Mushroom: Increases the player's attack power. When a player uses a
weapon, the weapon's damage is recalculated, incorporating the player
character's Power attribute, which determines the extent of the damage

Page 10 of 43

Technical Design Document for BlockoutShooter Jiangye Song

boost (damage = base damage * power). This enhanced damage output
empowers players to engage their opponents more effectively.

* Keep in mind: The damage of a staff is made to always 0, as it's too advantageous
for dyeing blocks .

e Green Mushroom: Boosts the player's hit points (HP increase by 40-80), or
increasing both current and maximum HP (HP increase by 25-50, with a 0-30
health boost), thus providing survivability advantages.

e Yellow Mushroom: Combines the benefits of increased HP and enhanced
attack power, offering a well-rounded advantage to the player.

e Blue Mushroom: Amplifies the "multiplier" of the player's weapon. The
impact of this multiplier varies based on the player's choice of weapon:

o Club: The player gains a 300 more strength from each multiplier when
pushing opponents. This enhanced strength allows the player to push
their opponents off cliff more easily.

o Rocket Launcher: The player's weapon spawns [Multiplier] rockets
upon use, with each rocket deviating by a 30-degree angle from the
others. This creates a wider area of effect and increases the area
damage potential.

o Staff: The player's weapon spawns [3 * Multiplier] blaster shots upon
use. This rapid-fire rate provides an efficient way to dye the colorable
blocks, making it become a comeback weapon when the other player
has already occupied a lot of blocks.

o Firework Launcher: The player's weapon casts a [Multiplier] number
of fireworks in sequence, with a 0.4-second delay between each
firework. This allows for a dazzling and visually striking attack that can
disrupt opponents and add a level of unpredictability to engagements.

The ability provided by each power-up is randomly selected from the above, which
adds an element of unpredictability to the game. This randomness is achieved
through a function called "GeneratePowerUp" within the Powerup class. It utilizes
the "RandRange" function to determine the power-up type, which then executes the
"SetupPowerUp" function with appropriate parameters based on the random
selection.

Page 11 of 43

Technical Design Document for BlockoutShooter

Sequence Diagram

Generating powerups when Player died

Jiangye Song

Generating powerups when Player died

BlockoutShooterCharacter

PowerlUp

L

Respawn

]

DropPowerlUp

-

GeneratePowerUp
»

™

Multiplayer
Game State & Player State

SetupPowerlUp

Blockout shooter game contains player states which are held by each player, and a
game state which stores the teams by storing the player states in different arrays.

Game State

Function Description

AShooterGameState()

TeamOneScored(int)
TeamTwoScored(int)

PlayerScored(APlayerState*)
RestartPlayer(APlayerState*)

GetPlayerTeamNumber(APlayerState*)

GetTeamColour(APlayerState*)

GetScoreRatio(APlayerState*)
AddPlayerState(APlayerState*)

AddOnePercentage(bool)

Constructor that initializes the score of
both teams to 0.
Increase the score of Team 1.

Increase the score of Team 2.

Increase the score of a team by one
depends on the PlayerState.

Respawn the player to the spawn points
according to their team number.
Return the team number of a player by
searching their PlayerState from the
TArrays.

Return the color of the team by
searching their PlayerState from the
TArrays.

Return the current ratio of the current
team in compare with the other team.
Add the player to a team by inserting
their PlayerState to the teams’ TArray.
Increase the percentage of team one
which represent the percentage of
colorable blocks dyed by team one,
decrease team two percentage when
bool is true.

Page 12 of 43

Technical Design Document for BlockoutShooter Jiangye Song

AddTwoPercentage(bool)

Increase the percentage of team two
which represent the percentage of
colorable blocks dyed by team two,
decrease team one percentage when
bool is true.

Property

Description

TeamOneScore
TeamTwoScore

TeamOne

TeamTwo

SpawnLocations

BlockCount

GameTime

Player State
Property / Function

ClientInitialize(AController*)

Team 1’s score in int. Team score should
showed consistently in each client.
Team 2’s score in int. Team score should
showed consistently in each client.

A TArray that contains all PlayerStates
that owned by Characters in TeamOne.
Team members should contains the
same players in each client.

A TArray that contains all PlayerStates
that owned by Characters in TeamTwo.
Team members should contains the
same players in each client.

A TArray that contains all the spawn
locations to respawn the player
characters.

Represent the number of colorable
blocks of the game, used to calculate the
amount to increase/decrease the
percentage of each team.

The countdown time of the match in the
game.

Description

Called by Controller when its PlayerState is
initially replicated. Add this player state to the
GameState.

Page 13 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Class Replication

Class Property Name Description
BlasterExplosion VelocityAmount The velocity that will used to spawn
the explosion.
StrainAmount The strain that will used to spawn

the explosion.

Collectable Hitbox The collision hitbox for the
collectable item.
ItemComponent The component represents the
collectable item. All clients should
have the same item component for
each item.
“ FireworkMesh The mesh of the firework.

OwningCharacter The player character who launched
the firework, not replicating may
cause it became null for some

client.
bVisible
ProjectileRocket RocketMesh The mesh of the rocket.
OwningCharacter The player character who launched
the rocket.
ProjectileMovementCo The component responsible for the
mponent rocket's movement, replicate to

make the actor move smoothly with
the same trail.
L el HologramMateriallnsta The material instance controlling

nce the appearance of the
invulnerability potion's holographic
effect.
OwningCharacter The player character who collected
the item.
MovingBarrier Mesh The mesh of the barrier.
bisBlocking A Boolean indicating whether the

barrier is currently blocking (or
trying to block) player movement,
replicate to make sure the barrier is
at the same state for all clients.

PressurePlate Matlnterface The material instance of the
material interface.
Matlnstance The material interface of the
material.

ColorableBlock TeamNumber The team number of the team that
represented by the current dyed

Page 14 of 43

Technical Design Document for BlockoutShooter Jiangye Song

color. Initially -1 represented the
block is uncolored.

BlockMesh The mesh of the block.
Matlnstance The material instance of the
material interface.
Matlnterface The material interface of the
material.
PowerUp PowerUpMesh The mush mesh of the power up.
CylinderMesh Lower part of the mush mesh.
Hitbox The collision hitbox of the power
up.
Matlnstance The material instance of the
material interface.
Matlnterface The material interface of the
material.
HealthBoost The amount of the health boost that

will be applied to the player when
the player is taking this power up.
Heal The amount of the instant heal that
will be applied to the player when
the player is taking this power up.
Strength The amount of the strength that will
be applied to the player when the
player is taking this power up.
Multiplier The amount of the multiplier that
will be applied to the player when
the player is taking this power up.
Type The type of the power up.

Page 15 of 43

Technical Design Document for BlockoutShooter

Remote Procedure Calls

Class Name

ClubComponent /
BlasterExplosion /
Firework /
ProjectileRocket

RocketLauncherC
omponent /
FireworkLauncher
Component

ClubComponent /
Firework /
ProjectileRocket
ColorableBlock

BlockoutCharacte
r

Function

ServerBonk /
ServerExplode

ServerSpawnFirework /
ServerSpawnRocket

SpawnSplatEffect

UpdateTeamNumber(int)

DropPowerUp(FVector&,
FRotator&)

UpdateDrowningStatus(int
)

DeathParticles

ServerFireWeapon

ServerDetachWeapon

Jiangye Song

Type Description
Server, Complete the
Reliable action on the server

to make the
damage result is
synchronized, as
well as the net
multicast functions
inside it.

Server, Complete the

Reliable action on the server
to make the actors
created across all
nodes.
NetMulti Play the splat effect
cast,Relia on all client and
ble server sides.
Server, Update the team
Reliable number of the
team that
represented by the
current dyed color.
Server, Create a power up
Reliable on the specified
location with
specified rotation
on the map.
Server, Update the status
Reliable of the drowning
status of the
current player.
NetMulti Play the Death
cast, particle effect on all
Server, nodes.
Reliable
Server, Use weapon on the
Reliable server to make it
synchronized.
Server, Remove weapon
Reliable the action on the
server to make sure
the weapon
destroyed on all
nodes.

Page 16 of 43

Technical Design Document for BlockoutShooter Jiangye Song

ServerSpawnExplosion Server, Spawn explosion
Reliable caused by the
blaster or dye
particles when they

collided with
something.
ServerDisablelnvulnerabilit ~ Server, Disable the
y Reliable invulnerability of a
player character.
UpdatePPEComMat / Client, Update the post

UpdatePPEInstComMat Reliable process effect for
client’s follow
camera’s ppe

component
according to their
character status,

must not
synchronized.
UpdateMaterials NetMulti Change/reset the
cast, player material,

Reliable need to have the
same material for
all players to see
PowerUp SetupPowerUp(float,float,f Server, Setup the mesh
loat,int) Reliable, attachment and
Multicast save the values of
its properties.

GeneratePowerUp Server, Randomly select
Reliable the type of the
power up.
DropPowerUp(FVector&, Server, Create a power up
FRotator&) Reliable on the specified
location with
specified rotation
on the map.

Page 17 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Physics Constraint 1 - Lever

A Lever to control the wrecking ball.

Overview of Interaction

The lever is a physical object within the game world that serves the purpose of
introducing dynamic, and its interaction is based on physics constraints and the tick
function. Upon activation, the wrecking ball will start swinging back and forth due to
physics. The swinging motion of the wrecking ball can be observed visually in the
game environment. It is designed to hit and break the wall on the edge of the map.

Interaction Description

How the Interaction Works

The wrecking ball does not have gravity at the start so it cannot swing. When the
lever is pulled by a player, the tick function detects the angle and enables the gravity
of the wrecking ball that is selected in the detailed panel. The swinging wrecking ball
collided with the wall on the edge of the map, exerting a force on it and started to
collapse.

Inspiration / Reference Images

The inspiration for the lever and wrecking ball physics interaction in Blockout
Shooter is from the game Human: Fall Flat. This game is known for its physics-based
puzzles, reveal the fun for unpredictable outcomes from interactions.

(Retrieved from: https://www.youtube.com/watch?v= 4EhMRdT1XI)

Page 18 of 43

https://www.youtube.com/watch?v=_4EhMRdT1XI

Technical Design Document for BlockoutShooter Jiangye Song

In-Engine Screenshots

The player broke the wall by activating the wrecking ball on the corner of the map by
pushing the lever.

Properties and Values

Property Description of Purpose Value
Angular Limit The limit on amount of 30 Degrees
rotation that can be
applied as part of lever.

Limit Stiffness The bounce force of the 50

lever when a limit is

exceeded.
Angular Motor Target The rotation the lever FRotator(0,0,0)
Orientation tries to rotate to (in this

game, the original
orientation).

Angular Motor Target The strength at which the = 50
Orientation strength lever tries to rotate to a
rotation

Diagram of Interaction

—

Lever Arm P

Lever Base

Physics Constraint 2 - Tree

A Tree that provides powerups.

Page 19 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Overview of Interaction

The Tree actor introduces a strategic gameplay element into Blockout Shooter,
emphasizing player decisions and risk management. While it does add dynamism to
the game environment, its primary purpose is to create opportunities for strategic
gameplay. Players can push the Tree to earn power-ups from them, but this action
might also expose them to attacks from the opponent. Moreover, the thrust force
generated by the Tree actor can push the player outside the arena, resulting in their
elimination, adding a layer of risk to the interaction.

Interaction Description

How the Interaction Works

As the tree does not have a physical collision, a tree root mesh is added and shows
as a cube in the engine but will not be visible in the game. When player is trying to
push the tree, it is actually pushing the cube (tree root) which also drives the tree to
rotate the destination rotation.

Tracking by the tick function, when the Tree actor is pushed, it responds by bouncing
back. The extent and direction of this bounce are determined by the magnitude and
direction of the force applied by the player. The vector is calculated by vector
subtraction, but the z-axis force will force set to 500. The tick function will also
create a random power-up near the tree.

To prevent player from being thrust to an extremely high or far place, the velocity is
limited in BlockoutShooterCharacter tick function by 1000.

Inspiration / Reference Images
None.

In-Engine Screenshots

The player is thrust out from arena when pushing the trees.

Properties and Values

Property Description of Purpose Value
Angular Limit The limit on amount of 30 Degrees
rotation that can be
applied as part of lever.

Page 20 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Angular Motor Target The rotation the tree tries FRotator(0,0,0)
Orientation to rotate to (in this game,

the original orientation).
Angular Motor Target The strength at which the 100
Orientation Strength tree tries to rotate to the

rotation.
Angular Motor Target The target angular FVector(0)
Velocity velocity for the motor.
Angular Motor Target The strength to reach the 5
Velocity Strength target angular velocity.

Diagram of Interaction

)

Tree Root

Tree Base

Physics Constraint 3 - PressurePlate

Overview of Interaction

The PressurePlate is a dynamic element within the Blockout Shooter game, designed
to introduce interactivity, strategy and change the game environment. Its primary
function is to influence the state of "MovingBarrier" objects in the game world. Upon
activation, it initiates a cascading effect by altering the "blsBlocking" Boolean
attribute of the associated MovingBarriers. This interaction leads to changes in the
position and behavior of these barriers, dynamically affecting player movement and
strategy.

Interaction Description

How the Interaction Works

The operation of the PressurePlate interaction is based on a sequence of events.
When a player or object (like wall / box fragments) step on/hit with the
PressurePlate, it activates a trigger event. The PressurePlate then change the
"blsBlocking" Boolean attribute of the associated MovingBarriers. This attribute
determines whether the barriers are actively blocking player movement or hidden
beneath the ground.

Inspiration / Reference Images

The inspiration for the PressurePlate interaction in Blockout Shooter comes from the
game Superliminal. In Superliminal, players often encounter pressure plates as
mechanisms for opening doors and progressing through the game world. These

Page 21 of 43

Technical Design Document for BlockoutShooter Jiangye Song

pressure plates require players to step on / place objects on them to trigger their
effects.

(Retrieved from: my own recordings)

In-Engine Screenshots

The player stepped on the pressure plate to lower the moving barrier.

Properties and Values

Property Description of Purpose Value
Linear Limit Z Motion The limit on amount of 5cm
Limit displacement that can be
applied as part of lever.
Linear Motor Position The bounce force of the FVector(0,0,0)
Target lever when a limit is
exceeded.
Linear Motor Position The strength at which the 50
Target strength lever tries to rotate to a

rotation (in this game, the
original position).

Diagram of Interaction

H 5cm
H S5cm

Plate Border Plate Border

Initially 10 cm

Page 22 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Advanced Niagara Particle Effect

Niagara Particle Effect - NS_Mush
NS_Mush is the power-up picking effect in BlockoutShooter.

Overview of Effect

The NS_Mush Niagara particle effect is designed to enhance the visual aspects of
power-up mushroom pickups within the game. This effect provides a captivating
visual representation of the power-up acquisition. It communicates to players that
they have collected a power-up and accentuates the significance of this in-game
action.

Effect Description

At the center of the effect, the SingleLoopingParticle emitter represents the location
where the power-up mushroom was collected. This emitter features particles that
dynamically grow (0-0.2 seconds) and shrink (0.3-0.5 seconds) in size, mimicking the
pulsating effect of a power-up. The color of these particles matches that of the
power-up mushroom, creating a visual connection between the effect and the
collected item.

A mesh burst emitter complements the central effect by creating a burst of mesh
particles that resemble the contour of a diamond. These mesh particles share the
color of the power-up mushroom and rotate gracefully. As time progresses, these
particles confluence back toward the center eventually, aligning with the shrinking
effect of the SingleLoopingParticle emitter.

There are two BlowingParticles emitters operating simultaneously to add an extra
layer of visual excitement. One emits confetti in random colors, adding a vibrant and
dynamic aspect to the effect. The other emitter blows confetti in a color that
matches the power-up mushroom's color, reinforcing the thematic connection
between the effect and the collected power-up.

In addition to the previously described elements, the SingleLoopingParticle and the
mesh burst emitters now include a point attraction force. This position is set as a
parameter "Dest," represents a potential location where the player might be
situated at that moment. As the effect progresses, the attraction force gradually
increases from zero, pulling towards the specified "Dest" location.

Page 23 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Inspiration / Reference Images:

In-Engine Screenshots:

The player claimed a yellow mush.

Properties and Values

Emitter Property Description Value
of Purpose
SingleLoopingParticl Scale Sprite Controls the Scale Factor:
e Size size of the _
sprites.
Point Control the Strength:
Attraction strength and
Force location of Position: Dest
the
. (Parameter)
attraction
force.
ConfettiBurst Shape Controls the Radius: 12.0f
Location location of
[Sphere] the meshes.

Add Velocity Controls the Velocity Speed: 1000.0f
[From Point] strength of
force of the

burst.
Scale Mesh Controls the Scale Factor: Ramp Up
Size size of the Down Curve
meshes.
Aerodynamic Controls the Aerodynamic Drag:
Drag rotation of Random Range Float 0.4-
the meshes. 1.2
Point Control the Strength:
Attraction strength and _
Force location of Position: Dest
the' (Parameter)
attraction
force.
BlowingParticles Wind Force Applies a Random Range Vector (-
wind speed 500,-500,0)-
to the (500,500,1000)
particles

Page 24 of 43

Technical Design Document for BlockoutShooter

Scale Sprite
Size

Niagara System / Emitters Breakdown

Controls the
size of the
sprites.

Jiangye Song

Scale Factor:

The particle that stays at the center of the effect

Loop once,
duration 7.0

Lifetime: 7.0
Color:<UserParam>Color

Attract radius: 1000.0
Position :<UserParam>Dest

Lifetime: 4.0-6.0
Color: <UserParam>Color
Mass: 0.75-1.5

Speed: 1000.0
Offset: (0,0,-8)

SingleLoopingParticle

i ®
Properties oy
Emitter Summary
Emitter Spawn

w Emitter Update
Self once

w Particle Spawn
Initialize Particle

w Particle Update

Create a burst of meshes

ConfettiBurst
v &
Properties ZX
Emitter Summary

Emitter Spawn

w Emitter Update

w Particle Spawn

¥ Particle Update

Scale: Ramp up down s

Gravity: (0,0,-980)

Controls the rotation

Drag: 0.4-1.2 Rotational Drag: 0.05
Lift Contriution: 0.3-1.0

Rotation: 0.75-2.0

®

Spawn Count: 1

Kill particles after lifetime

Size: Curve

Spawn Count: 10

Radius: 12.0

Random

Kill particles after lifetime

Scale of initial velocity: Ramp Down

Attract radius: 1000.0
Position :<UserParam>Dest

"~ Strength: Ramp up
Mesh: ControlRig_Diamond_3mm

Page 25 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Create blowing confetti

BlowingParticles
L]

Properties + Stage
Loop once L

Duration 7.0

Emitter Summary

Emitter Spawn

w Emitter Update
(O]
Wind speed: (-500,-500,0)-(500,500,1000) ‘ /-
’ ' = o ndom
Scale: 0.333-1.0 : -
Kill particles after lifetime

Lift Contriution: 0.75

Rotation: 1.8-3.2 . e Scale of sprite: Curve

Sprite: DefaultSpriteMaterial

Lifetime: 3.0-6.0
Color: <UserParamsColor R Spawn Count: 10
Mass: 0.75-1.5 e 5 Radius: 300.0
Controls the rotation fin Foree
Drag: 0.33-1.0 Rotational Drag: 0.15 ol

Create blowing confetti

BlowingParticles001

Properties ST + Stage
LOOp l.:)nCE Emitter Summary
Duration 7.0 o
¥ Emitter Update
Lifetime: 3.0-6.0 cerl
Color: Random Spa e = Spawn Count: 10
Mass: 0.75-1.5 : Radius: 300.0
Wind speed: (-500,-500,0)-(500,500,1000) N : /—
A g 200, entation Randc Random
Scale: 0.333-1.0 ®
Kill particles after lifetime

Controls the rotation Cho
Drag: 0.33-1.0 Rotational Drag: 0.15 ’ i

Rotation: 1.8-3.2 0 Scale of sprite: Curve

3 Sprite Renderer

:

Sprite: DefaultSpriteMaterial

C++ Parameters Breakdown

Provide detailed information on the C++ exposed parameters used for creation of
the particle system.

Color The color of the mush mesh of the
power up that is taken. Used as color of
confetti, particle, and mesh.

Dest The potential location of the player
after 0.4 seconds. Used for point
attraction force Vector.

Page 26 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Destruction Aware Niagara Particle Effect
Niagara Particle Effect — NS_TrailingPiece

NS_TrailingPiece is a fire trailing effect.

Overview of Effect

The NS_TrailingPiece Niagara particle effect enhances the visual impact of fragile
actors’ destruction within Blockout Shooter. This effect responds to the collapse of
fragile actors (glass wall / fragile obstacles), creating a more chaotic view. Its purpose
is to intensify the sense of chaos of destruction, which attracts the player to break
them more, enhancing the overall gameplay experience.

Effect Description

The NS_TrailingPiece effect listens for Chaos destruction data triggered from the
world. When a fragment is marked for destruction, the NS_TrailingPiece effect
generates 5 additional fragments behind the fragments from the fragile actors. It
applies itself a velocity (from point) to make each fragments moves more randomly.

Inspiration / Reference Images:
The NS_TrailingPiece Niagara particle effect is commonly seen in games, movies, and
the reality when structures crumble or explode.

In-Engine Screenshots:

The player broke the wall using a staff.

Page 27 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Properties and Values

Property Description of Purpose Value

Spawn from Chaos Spawn particles based on Parameter in Chaos
event data from a chaos Destruction Data
solver. Spawn Percentage

Fraction: 5.0

Apply Chaos Data Set position, velocity, and = Parameter in Chaos
color from a chaos solver. Destruction Data

Add Velocity [From Point] = Controls the initial Velocity Speed: 25.0f
velocity of the mesh.

Drag Air resistance. Drag: 1.0f

Mesh Rotation Force Controls the rotation Rotation: (-10,-10,-10)-
force of the meshes. (10,10,10)

Page 28 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Collision Enabled Niagara Particle Effect
Niagara Particle Effect — NS_Bathtub

Overview of Effect

The NS_Bathtub Niagara is an essential particle effect to enhancing the core
gameplay experience in Blockout Shooter. Its primary function is to dye the colorable
blocks with a more dynamic and visually engaging approach. When players use their
weapons, the bubbles in NS_Bathtub effect will start to splat, creating a visually
captivating spectacle. The bouncing bubbles enhanced the gameplay experience by
providing dynamic visual feedback which attracts player characters to dye more
colorable blocks on the map.

Effect Description

When a player uses their weapon, the NS_Bathtub effect is triggered. It generates a
burst of bubbles from a specific center point of an object. The bubbles within the
effect are collision-enabled, meaning they interact with the actors in the map. When
these bubbles hit the ground, wall, or any surface, they bounce off. When they
overlap with colorable blocks, they will create shape collisions to dynamically change
the color of the blocks to match the player's team color. This innovative approach
turns the NS_Bathtub effect into a critical gameplay element, and added more
strategies for the player (for example, the player can shoot a wall to create bubbles
to dye the blocks that near their opponent).

Inspiration / Reference Images:

The inspiration for the NS_Bathtub effect from Blockout Shooter is from the weapon
bathtub in Splatoon. Where players can splat bubbles out to color the arena. Using
similar effects aiming to capture the same level of visual appeal and makes more
sense for the main topic of Blockout Shooter (which is coloring the blocks) the same
time.

(Retrieved from: my own recordings)

Page 29 of 43

Technical Design Document for BlockoutShooter Jiangye Song

The dye effect appears when a player uses their club.

Properties and Values

Property Description of Purpose Value

Add velocity [in cone] Add a velocity to the Velocity Speed: 300.0f
mesh in cone.

Collusion Cast rays to calculate its Bounce: 1.2

collusion in the world.

C++ Interaction Description

The NS_Bathtub effect is equipped with a collision module, enabling the bubbles it
generates to interact with objects in the game world. It also holds a reference to the
player character who spawned it through the "ClassToTell" object parameter. This
reference establishes a connection between the particle effect and the player
character. The "Export Particle Data to Blueprint" module is set to export data under
the condition of a collision event, ensuring that relevant information is passed to the
Blueprint only if particle collided. The Callback Handler Parameter for the
NS_Bathtub effect is set as "ClassToTell" object, which is the player character who
spawned this effect.

The player character class in Blockout Shooter is a child class of
"INiagaraParticleCallbackHandler." This means that it has the ability to receive
particle data from the NS_Bathtub effect. When any particles from any effect collide
with any object, the player character's "ReceiveParticleData_Implementation"
function is triggered. Inside this function, for each particle collision event, the player
character generates a small FCollisionShape sphere with a radius of 10 cm. This
sphere is positioned at the location of the bubble particle's collision. If the sphere
collides with a colorable block in the game world, the player character calls the
"UpdateTeamNumber" function for that specific block.

This comprehensive process ensures that the NS_Bathtub effect, the player
character, and the game environment are seamlessly interconnected. It allows for
dynamic interactions and strategic color control within the Blockout Shooter game,
enhancing the gameplay experience.

Page 30 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Shader Effects

Shader Effect 1 — M_Bubble

Overview of Effect

The M_Bubble shader effect is a visually charming material in Blockout Shooter.
When a player character obtains an invulnerability potion, the M_Bubble material
will apply on their appearance, creating a unique, hologram-like aesthetic. This effect
impacts gameplay by signifying the player's enhanced state, making it easier for both
the player and the opponent to identify invulnerable characters during intense
battles.

Effect Description

The M_Bubble shader material seems like an air bladder at first glance, featuring a
transparent and reflective surface. This material is designed to convey the player
character's invulnerable status.

M_Bubble is designed to reflect two distinct colours. The central portion of the
material reflects a base colour, while the outer edges reflect a secondary colour.
Both colours are dynamically controlled by parameters, ensuring that they align with
the player character's team affiliation. In C++ code of BlockoutShootherCharacter,
the base colour parameter of the M_Bubble material is set to match the player's
team colour, providing a clear visual representation of their alliance. The secondary
colour parameter, on the other hand, is derived from the reverse colour of the
player's team.

Inspiration / Reference Images:

Such transparent material is widely used across games when characters in game are
invincible, invisible, have special vision, etc. For example, in Hogwarts Legacy, the
character turns transparent when using Disillusionment spell.

(Retrieved from: my own recordings)

Page 31 of 43

Technical Design Document for BlockoutShooter Jiangye Song

In-Engine Screenshots:

The blue team player claimed a potion and is invulnerable now.

Properties and Values

Property Description of Purpose Value \

Color 1 Used to control the edge color of shader Float4 (0,0,1,0)
dynamically

Color 2 Used to control the base color of shader @ Float4 (1,0,0,0)
dynamically

Color 1 Bright Used to control the brightness of the Float (1.8)
edge color of shader dynamically

Color 2 Bright Used to control the brightness of the Float (1.8)
base color of shader dynamically

Opacity Addition overall opacity for the shader Float (0.4)

Divide Used to control the alpha portion of the @ Float (0.06)
base color

Contrast Used to control the contrast of the base Float (1.6)
color

Node Graph

Secondary Colour
(Edge Colour)

Base Colour

Page 32 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Shader Effect 2 - M_Plate

Overview of Effect

The M_Plate shader effect is mainly designed for pressure plates within the
gameplay environment. When a pressure plate is activated, the M_Plate material
will be light up. It serves as an indicator, both visually and functionally, by conveying
whether the pressure plate is active or not. This effect aids players in understanding
the status of pressure plates.

Effect Description

M_Plate has a colour parameter that determines the material's main colour hue.
This parameter enables customization of the material's colour to different
components (not in current stage of development). There's another parameter
named 'z' represents the object or component's location on the Z-axis. The M_Plate
material responds to changes in this parameter by dynamically adjusting its
brightness. When the 'z' value is lower, indicating that the pressure plate is pressed
or activated, the material becomes brighter. This visual change makes it clear to
players that the pressure plate is currently in use. Conversely, when the pressure
plate is released, allowing the 'z' value to gradually increase back, the material
smoothly transitions back to its normal colour. This visual feedback conveys the
status of the pressure plate, adding a dynamic element to the game environment.

Inspiration / Reference Images:

Pressure plate with colour changing is common in video games. Take Mario 3D world
as example, Mario used the rock monster to activate the plate. Use such material
will make player understand that the component is "push-able".

(Retrieved from: https://www.youtube.com/watch?v=hOB8bYcV1ik)

In-Engine Screenshots:

The plate has different brightness in different states.

Page 33 of 43

https://www.youtube.com/watch?v=hOB8bYcV1ik

Technical Design Document for BlockoutShooter Jiangye Song

Properties and Values

Property Description of Purpose Value

Color Used to control colour of shader Float4 (0.45, 0.12, 0.75, 1)
dynamically

Z Used to pass the z component location Float (15.0)
of the actor

ZUpper Used to pass the maximum reachable z Float (15.0)
component location

ZLower Used to pass the minimum reachable z Float (5.0)

component location

Node Graph

Wuitiply v
DM_Plate

Base Colour

(Sibtract v

(Sibtract . v

Page 34 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Post Processing Effects

Local Post Processing Effect — MP_Death

Overview of Effect

The MP_Death post-processing effect in Blockout Shooter will activate when a
player's followed camera hits the PostProcessVolume5 on the bottom of the map.
This effect can also be triggered when a player character dies, as it's controlled by a
PostProcessComponent in C++. The primary purpose of this effect is to convey the
player's "death" or defeat within the game environment.

Effect Description

The effect desaturates the screen, which emphasizes the dark and defeated mood
following the character death. However, the colorable blocks on the player's screen
remain unaffected. This intentional design choice ensures that the status of
colorable blocks remains clearly visible to players during their respawn time, which
allows players to strategize and make informed decisions. A diamond-shaped
gradient is superimposed onto the screen, creating a vignette effect that darkens the
edges of the viewport. This serves to darken the screen further.

Additionally, The MP_Death effect includes an old-TV effect, achieved by using the
"MF_HologramBand" material function. This component adds a touch of distortion
and vintage aesthetics to the screen.

Inspiration / Reference Images:

The inspiration for the MP_Death post-processing effect is drawn from the failure
screen in Grand Theft Auto V. It contains a desaturated look with a focus on the
central of the screen to highlight the player is "waste".

(Retrieved from: https://www.youtube.com/watch?v=KOeJAoSyVWA)

Page 35 of 43

https://www.youtube.com/watch?v=KOeJAoSyVWA

Technical Design Document for BlockoutShooter Jiangye Song

In-Engine Screenshots:

3% : 0%

q

The player fell out of the world.

Properties and Values

Property Description of Purpose Value
MF_HologramBand Generate continuous moving bands with Speed: 100
width and gap. Width: 0.8
Gap: 10
DiamondGradient Generate a diamond gradient on the Falloff: 0.5
screen.
SceneTexture:PostP The player screen. PostProcessinputO

rocesslnputO
SceneTexture:Cust | Render of actors on the screen that have = CustomStencil
omStencil a value of 1 in custom stencil.

Node Graph

Page 36 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Global Post Processing Effect

Overview of Effect

The MP_Danger post-processing effect in the game is crucial in enhancing the
player's sense of urgency and peril (as there's no health bar ui). It activates when a
player's character's hitpoints drop below 50%, providing constant feedback about
their fragile state. This effect is visible across the entire game environment,
providing constant feedback to the player about their in-game condition, cueing
player to get heal as soon as possible.

Effect Description

The MP_Danger effect remains active as long as the player character's hit points are
below 50%. Once activated, the player's screen is immersed in a striking purple hue.
This coloration serves as a strong visual cue to convey the player's precarious state.
It radiates from the edges of the screen and keep breathing (expanding and
contracting) over time, further reinforcing the notion of danger, and urging players
to take immediate action. This purple hue emphasizes the edges of the screen while
leaving the centre unaffected by the purple colour to prevent the player be
distracted too much.

Additionally, A subtle heat wave distortion continues to be present, creating a visual
illusion of rising temperature or stress. This effect adds to the overall sense of
urgency and vulnerability.

Once the character's hit points reached 50% or more (e.g., healed by green
mushroom), the effect dissipates, indicating the player is temporary out of danger.

Inspiration / Reference Images:

Danger effects are very common technique in video games which use extreme
colours on the edge of the screen to alert players that the characters are in danger.
Such effect is too common that even the driving navigation application Amap have
used it as well when the user is speeding!

X BBAE 152% 86 A
oy 17:59 565 Be

(Retrieved from: also my own recordings)

Page 37 of 43

Technical Design Document for BlockoutShooter Jiangye Song

In-Engine Screenshots:

The player character hit themselves which puts they in danger.

Properties and Values

Property Description of Purpose Value \
Time The game time, which is a value that Time
constantly increases.
SceneTexture:PostP = The player screen. PostProcessinpu
rocesslnputO 10
Texture Sample A picture that is randomly distributed in T_Perlin_Noise_
color which can create effects that looks M
like random.
DebugTimeSine A sine wave (sin(time)), can be used to Frequency: 0.4

make things grow and shrink smoothly
and continuously.
Colour The colour that appear on the edge of Float4
the screen. (1,0,0.48,1)

Node Graph

Makes the texture keep moving
Move some pixels from
screen to create the
heatwave

Page 38 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Optimisation

Statistics Auditor Report

R Export

162305 1623056 |1298.44

55.7063 - |55.7063% - 55.7063
21.279K128 162843 162843 325687
OKB 64 50.0000 - |50.0000C - 100.000

ISimplePivotPainterExans Actors
nderBuss_BP_ProjectileLauncher_|
2 Actors 7

2 Actors,

0
615 240.779 0KB 0
2,456 109 499 0 KB o
1920 100.123 0 KB 0
1344 76.392 KO KB 0
568 47,804 KO KB 0
0
o
0
0
0

oKB 128 T4N2 TL4M4Z 142828
oKkB 128 63.5474 - |G3.BATAE - 127.284
OKB 384 50.0024 50.0024¢ 300.014
OKB 1408 504975 * 86.6025% 1660.80
5A4T.684,006 (244048 28404BC 195050
6,128.646,656 225000 - 2280487 - 558540
OKB 16128 141421 1414713 356381

esi

StaticMesh

be 3 StaticMesh

QuarterCylinder 8 4 StaticMesh

fsh_Cube 13 Actors StaticMesn 13 13 13 12 156 15622K0KE OKB

Flane 252 Actors StaticMesh 252 252 252 2 504 12768 KOKB 0 KB
S

744 34.315KOKB

N

22

B
=
3

1,056 20392KOKB OKB
36 288 18.2KB OKB DKB

ERO N RN e
BRE e =
soeoocoocoeo oo

Analysis

The colorable blocks are the main component within the game. In order to fill the
ground with this actor to achieve the desire gameplay, | have used a total number of
252 planes in the game to create the colorable block actors for the ground. It is
fortunate that each plane mesh contains 2 Tris, resulting in a total of 504 Tris. Given
the low impact on performance, there seems to be no immediate need for
optimization at this stage.

However, the table reveals that the "SimplePivotPainterExample" mesh, which is
used as the "Tree" actor's mesh in the game, has a significant number of Tris (4080).
This might because that this mesh is dynamic. Since there are currently 8 trees on
the map to be rendered, the sum of Tris adds up to 32,640. This suggests that
optimizing or replacing the mesh for the trees might be very beneficial for
performance.

Additionally, the report identifies two instances of "SM_Rock" which serve as
decorations in the game world, with a combined sum of 2456 Tris. Given that these
rocks are primarily decorative and do not significantly impact gameplay, it may be
worthwhile to consider their removal to further optimize performance.

Solution

A potential solution is to find or create a less complex mesh for the trees while
retaining the desired visual quality, which would reduce the overall Tris count and
improve performance without sacrificing the visual of the game.

Since the decorative rocks do not play a critical role in gameplay, | will consider
removing them to reduce the Tris count and improve overall performance.

Another viable solution is to use the level streaming / seamless loading. The game
can unload these meshes when player is far away from them and load them only if
they are getting closer to them.

Page 39 of 43

Technical Design Document for BlockoutShooter Jiangye Song

GPU Profiler Report

The most time-consuming aspect identified in the GPU Profiler Report is the
"DiffuselndirectAndAQ", which takes for 3.10ms+1.87ms of GPU processing time,
followed by "PostProcessing" at 1.79ms+0.82ms and "LumenScenelightning" at
1.33+1.22ms. These figures suggest that the game is currently relatively well-
optimized.

If further optimize performance is required, | can reduce the intensity or the numebr
of post-processing effects, which can potentially lower the GPU processing time;
however, post-processing plays a significant role in enhancing the game's visual
quality, this will decrease the quality of visual aspect in the game.

Shadow casting can be disabled, as shadows does not play a critical role in the
gameplay or visuals. By doing so, the processing required for dynamic shadows will
be omit, freeing up GPU resources.

Unreal Insights Report

Timing Sections Report

In this insight analysis, the specific scenario is a player character uses a rocket
launcher to interact with fragile obstacles twice and eventually suicides by using the
rocket launcher near a wall. These actions trigger various in-game events and
showcase performance metrics at different stages of gameplay.

The recorded insights highlight that the game's performance is not entirely stable,
with significant peaks at different points in the gameplay sequence. These peaks are
observed at the game's initiation, when the player character interacts with and
breaks the fragile obstacles, and finally, when the game ends. This indicates
potential areas where performance can be improved.

Page 40 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Timings Section 1

GPU CPU %

When the player character performs a rocket launcher action, there are five
instances of SpawnActor, which 5ms in total. This is already efficient in current stage
of development. However, it's important to note that player may be able to increase
the number of rockets fired per shot after they collects blue mushrooms, the
performance might degrade.

To improve these values in the future, we should consider simplifying the structure
or mesh of the rocket. This optimization can help maintain stable performance even
when multiple rockets are being spawned simultaneously due to power-ups. Another
approach is to lower the upper limits of the multiplier attribute of the player, which
limit the number of rockets spawned. By doing so, we can ensure smooth gameplay
experiences for players, particularly when player take a lot of blue mushrooms. This
optimization will contribute to the overall stability which will enhancing the player
experience.

Page 41 of 43

Technical Design Document for BlockoutShooter Jiangye Song

Timings Section 2

GPU CPU %

The timing report shows that a large number of GeometryCollectionComponent
instances (count: 78) are consuming a substantial amount of processing time,
approximately 18.1 milliseconds in total. The extensive computational demands are
primarily due to the need to calculate the movement and physics for numerous
fragments simultaneously.

A direct approach is to reconsider the placement of fragile obstacles in the game
world. Currently the obstacles are placing next to each other in order to completely
blocked the high platform. By not positioning them too close to each other, the
computational load required to calculate the physics and movement of numerous
fragments can reduce dramatically at once.

Alternatively, increasing the fragment size for the fragile obstacles geometry
collection can also be an effective solution. Fewer, larger fragments will require less
computational resources, enhancing performance and maintaining a smooth
gameplay experience.

Page 42 of 43

