

Technical Design Document
for BlockoutShooter

Jiangye Song

Technical Design Document for BlockoutShooter Jiangye Song

 Page 1 of 43

Contents
Project Overview .. 4

Game Mechanics Overview .. 4

Target Platform .. 4

Game Mechanics .. 5

UML Diagram .. 5

Movement Mechanics .. 6

Controls .. 6

Additional Gameplay Mechanic 1 .. 8

Mechanic Overview .. 8

Mechanic Description / Functionality .. 8

Sequence Diagram .. 9

Additional Gameplay Mechanic 2 .. 10

Mechanic Overview .. 10

Mechanic Description / Functionality .. 10

Sequence Diagram .. 12

Multiplayer ... 12

Game State & Player State ... 12

Game State ... 12

Player State ... 13

Class Replication ... 14

Remote Procedure Calls ... 16

Physics Constraint 1 - Lever ... 18

Overview of Interaction ... 18

Interaction Description .. 18

How the Interaction Works .. 18

Inspiration / Reference Images .. 18

In-Engine Screenshots .. 19

Properties and Values ... 19

Diagram of Interaction ... 19

Physics Constraint 2 - Tree ... 19

Overview of Interaction ... 20

Technical Design Document for BlockoutShooter Jiangye Song

 Page 2 of 43

Interaction Description .. 20

How the Interaction Works .. 20

Inspiration / Reference Images .. 20

In-Engine Screenshots .. 20

Properties and Values ... 20

Diagram of Interaction ... 21

Physics Constraint 3 - PressurePlate .. 21

Overview of Interaction ... 21

Interaction Description .. 21

How the Interaction Works .. 21

Inspiration / Reference Images .. 21

In-Engine Screenshots .. 22

Properties and Values ... 22

Diagram of Interaction ... 22

Advanced Niagara Particle Effect ... 23

Niagara Particle Effect - NS_Mush .. 23

Overview of Effect .. 23

Effect Description ... 23

Inspiration / Reference Images: ... 24

Niagara System / Emitters Breakdown .. 25

C++ Parameters Breakdown ... 26

Destruction Aware Niagara Particle Effect .. 27

Niagara Particle Effect – NS_TrailingPiece ... 27

Overview of Effect .. 27

Effect Description ... 27

Collision Enabled Niagara Particle Effect ... 29

Niagara Particle Effect – NS_Bathtub ... 29

Overview of Effect .. 29

Effect Description ... 29

C++ Interaction Description .. 30

Shader Effects .. 31

Shader Effect 1 – M_Bubble ... 31

Overview of Effect .. 31

Technical Design Document for BlockoutShooter Jiangye Song

 Page 3 of 43

Effect Description ... 31

Node Graph ... 32

Shader Effect 2 - M_Plate ... 33

Overview of Effect .. 33

Effect Description ... 33

Node Graph ... 34

Post Processing Effects .. 35

Local Post Processing Effect – MP_Death .. 35

Overview of Effect .. 35

Effect Description ... 35

Inspiration / Reference Images: ... 35

Node Graph ... 36

Global Post Processing Effect ... 37

Overview of Effect .. 37

Effect Description ... 37

Node Graph ... 38

Optimisation .. 39

Statistics Auditor Report .. 39

Analysis ... 39

Solution ... 39

GPU Profiler Report .. 40

Unreal Insights Report .. 40

Timing Sections Report .. 40

Timings Section 1 ... 41

Timings Section 2 .. 42

Technical Design Document for BlockoutShooter Jiangye Song

 Page 4 of 43

Project Overview
Blockout Shooter is an engaging 1 vs 1, third-person shooter game designed for PC.

This game introduces a unique and colorful mechanics to the traditional shooter

genre, making it interesting to a wide range of players. The central mechanic of

Blockout Shooter revolves around color-matching and strategic gameplay within a

dynamic arena filled with colorable blocks.

Game Mechanics Overview
Blockout Shooter introduces an innovative blend of color-matching combat and

strategic gameplay in a 2-player, third-person shooter experience. Players are

assigned specific colors, and they can only use their weapon when their standing on

blocks that have the same color with them (or uncolored blocks). Additionally,

power-ups can be acquired through defeating opponents or pushing the trees,

enhancing the overall depth and excitement of the gameplay. These mechanics

combine to create a dynamic and engaging multiplayer experience.

Target Platform
The primary target platform for Blockout Shooter is PC, leveraging the precision of

mouse and keyboard controls for an optimal gaming experience. If pursued, mobile

platform can be a target platform because touch controls can be applied on TPS. On

mobile platforms, the game will utilize intuitive touch controls for aiming and

movement, ensuring accessibility and engagement. However, target platform will

not include consoles because it will be hard to aim with a controller, and the

gameplay did not optimize for the controllers.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 5 of 43

Game Mechanics
UML Diagram
This game used the template of Third Person as a starting point. Classes provided by unreal and do not contain any modification will not show its attributes and functions in this UML, shows as a simple class shape.

This diagram is created via Lucidchart.

https://www.lucidchart.com/

Technical Design Document for BlockoutShooter Jiangye Song

 Page 6 of 43

Movement Mechanics
The movement mechanics of the players did not change in compared to original

Unreal Engine’s template in normal case. The gravity scale is 1.75, the maximum

walk speed is 500 cm/s, the max jump count is 1, and the max step height is 45.0 cm.

These defaults values are already good enough to create a fair and enjoyable arena.

However, if the player is on an enemy-colored colorable block, they start to drown.

Their maximum walking speed will decrease to 200 cm/s, and the gravity scale raises

to 5. This is aimed to give the player a penalty to tell player the importance of dyeing

blocks and tell player to avoid the enemy-colored colorable blocks as much as

possible.

Player characters can step on all the static meshes, geometric collection objects

(including the wall window and fragile obstacles) and physical-constrain enabled

actors (including lever, wrecking ball, and pressure plate) in the map, and they

cannot step on item components, collectables, particle effect, etc. Player characters

can step on powerups, but the powerups will be consumed when player characters

touches their hitboxes.

Colorable blocks collision profile is made as overlap all in the game and player

characters are not actually walking on it. Instead, the player characters are stepping

on the meshes below the colorable blocks (so colorable block is more like a tile).

Controls
Mapping Action Description Keyboard

Control Binding
Modifiers

Walking
Mapping

Move
Forward

Used to move the
player forward
relative to the

camera direction

W
Up

Swizzle Input
Axis Values

(YXZ)

Move Left Used to move the
player left

relative to the
camera direction

A
Left

Negate (XYZ)

Move
Backward

Used to move the
player backward

relative to the
camera direction

S
Down

Swizzle Input
Axis Values

(YXZ)
Negate (XYZ)

Move Right Used to move the
player right

relative to the
camera direction

D
Right

None

Jumping
Mapping

Jump
StopJumpin

g

Used to make the
player jump

Space None

Looking
Mapping

Look Used to rotate
the follow camera

of the player

Mouse
Movement

Negate(Y)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 7 of 43

Firing
Mapping

Fire Weapon Used to use the
weapon that

player is currently
holding

MouseLeftClick None

Detach
Mapping

Detach
Weapon

Remove the
weapon that

player is currently
holding

Q None

Fullscreen Toggle
Fullscreen

Used to switch
the game window

between
Fullscreen and

windowed

F11 N/A

Movement input will be translated into a 2D vector referred to as

"MovementVector" within the Unreal Engine. Unreal will initially determine the

forward direction based on the camera rotation. Then, it will calculate both the right

and forward directions through the GetUnitAxis function. These directions will be

combined with the MovementVector values to dictate the character's movement.

Similarly, aiming input will be transformed into a 2D vector known as

"LookAxisVector." Unreal Engine will directly apply the values of this vector to the

controller, enabling precise control over the player's aim within the game.

The input of jumping will set bPressedJump to true, it will then start counting the

jump key hold time which is used to decide the jump height of the player. Eventually,

the DoJump function in CheckJumpInput will perform the jump.

When the player presses the weapon fire button, FireWeapon function will be called.

If the player is holding a weapon and they’re allowed to attack, it will then call the

Use function of that weapon.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 8 of 43

Additional Gameplay Mechanic 1
The Splatoon-like colorable blocks.

Mechanic Overview
The Colorable Block mechanic is a fundamental element of Blockout Shooter, and

the inspiration is from Splatoon by Nintendo. In the arena, players can use their

weapons to unleash color blasts that dye colorable blocks within the game world to

match their assigned color. These colorable blocks play a crucial role in shaping the

battlefield and influencing player strategy.

Mechanic Description / Functionality
Colorable blocks serve as both a tactical advantage and a potential obstacle. These

blocks initially start as uncolored and won't affect any player’s side. When a player

uses their weapon, the weapon will collision enabled particles, and each of the

particle create a sphere collision with a radius of 10, which will dye all the colorable

blocks it collided to the player's assigned color (blue for team one and red for team

two for now) by calling UpdateColor function from them. While a player is colliding

with the colorable block, the block will call the UpdateDrowningStatus of the player

to notify player to check whether the color is their enemy's color. The player will set

drowning status to themselves if they are on an enemy-colored colorable block and

will remove (set to false) the drowning status if they are not. The movement values

will be changed whilst the drowning status is updated, the exact value of the

changes is described in Movement Mechanics.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 9 of 43

Sequence Diagram

Change color of colorable block

Technical Design Document for BlockoutShooter Jiangye Song

 Page 10 of 43

Set player drown status

Additional Gameplay Mechanic 2
Power-ups that change bullets into different types.

Mechanic Overview
The Power-Up mechanic in Blockout Shooter draws inspiration from classic arcade

games like Bomberman, introducing a variety of power-up items to enhance player

abilities.

These power-ups are represented by mushroom within the Blockout Shooter game,

each offering unique benefits when collected by players. However, once the player

died, they lose all the power-ups they claimed on respawn!

Mechanic Description / Functionality
Blockout Shooter features different types of power-ups, each denoted by a distinct

mushroom color:

• Red Mushroom: Increases the player's attack power. When a player uses a

weapon, the weapon's damage is recalculated, incorporating the player

character's Power attribute, which determines the extent of the damage

Technical Design Document for BlockoutShooter Jiangye Song

 Page 11 of 43

boost (damage = base damage * power). This enhanced damage output

empowers players to engage their opponents more effectively.
* Keep in mind: The damage of a staff is made to always 0, as it's too advantageous

for dyeing blocks .

• Green Mushroom: Boosts the player's hit points (HP increase by 40-80), or

increasing both current and maximum HP (HP increase by 25-50, with a 0-30

health boost), thus providing survivability advantages.

• Yellow Mushroom: Combines the benefits of increased HP and enhanced

attack power, offering a well-rounded advantage to the player.

• Blue Mushroom: Amplifies the "multiplier" of the player's weapon. The

impact of this multiplier varies based on the player's choice of weapon:

o Club: The player gains a 300 more strength from each multiplier when

pushing opponents. This enhanced strength allows the player to push

their opponents off cliff more easily.

o Rocket Launcher: The player's weapon spawns [Multiplier] rockets

upon use, with each rocket deviating by a 30-degree angle from the

others. This creates a wider area of effect and increases the area

damage potential.

o Staff: The player's weapon spawns [3 * Multiplier] blaster shots upon

use. This rapid-fire rate provides an efficient way to dye the colorable

blocks, making it become a comeback weapon when the other player

has already occupied a lot of blocks.

o Firework Launcher: The player's weapon casts a [Multiplier] number

of fireworks in sequence, with a 0.4-second delay between each

firework. This allows for a dazzling and visually striking attack that can

disrupt opponents and add a level of unpredictability to engagements.

The ability provided by each power-up is randomly selected from the above, which

adds an element of unpredictability to the game. This randomness is achieved

through a function called "GeneratePowerUp" within the Powerup class. It utilizes

the "RandRange" function to determine the power-up type, which then executes the

"SetupPowerUp" function with appropriate parameters based on the random

selection.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 12 of 43

Sequence Diagram

Generating powerups when Player died

Multiplayer
Game State & Player State
Blockout shooter game contains player states which are held by each player, and a

game state which stores the teams by storing the player states in different arrays.

Game State
Function Description

AShooterGameState() Constructor that initializes the score of
both teams to 0.

TeamOneScored(int) Increase the score of Team 1.

TeamTwoScored(int) Increase the score of Team 2.

PlayerScored(APlayerState*) Increase the score of a team by one
depends on the PlayerState.

RestartPlayer(APlayerState*) Respawn the player to the spawn points
according to their team number.

GetPlayerTeamNumber(APlayerState*) Return the team number of a player by
searching their PlayerState from the
TArrays.

GetTeamColour(APlayerState*) Return the color of the team by
searching their PlayerState from the
TArrays.

GetScoreRatio(APlayerState*) Return the current ratio of the current
team in compare with the other team.

AddPlayerState(APlayerState*) Add the player to a team by inserting
their PlayerState to the teams’ TArray.

AddOnePercentage(bool) Increase the percentage of team one
which represent the percentage of
colorable blocks dyed by team one,
decrease team two percentage when
bool is true.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 13 of 43

AddTwoPercentage(bool) Increase the percentage of team two
which represent the percentage of
colorable blocks dyed by team two,
decrease team one percentage when
bool is true.

Property Description

TeamOneScore Team 1’s score in int. Team score should
showed consistently in each client.

TeamTwoScore Team 2’s score in int. Team score should
showed consistently in each client.

TeamOne A TArray that contains all PlayerStates
that owned by Characters in TeamOne.
Team members should contains the
same players in each client.

TeamTwo A TArray that contains all PlayerStates
that owned by Characters in TeamTwo.
Team members should contains the
same players in each client.

SpawnLocations A TArray that contains all the spawn
locations to respawn the player
characters.

BlockCount Represent the number of colorable
blocks of the game, used to calculate the
amount to increase/decrease the
percentage of each team.

GameTime The countdown time of the match in the
game.

Player State
Property / Function Description

ClientInitialize(AController*) Called by Controller when its PlayerState is
initially replicated. Add this player state to the
GameState.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 14 of 43

Class Replication
Class Property Name Description

BlasterExplosion VelocityAmount The velocity that will used to spawn
the explosion.

StrainAmount The strain that will used to spawn
the explosion.

Collectable Hitbox The collision hitbox for the
collectable item.

ItemComponent The component represents the
collectable item. All clients should

have the same item component for
each item.

Firework FireworkMesh The mesh of the firework.

OwningCharacter The player character who launched
the firework, not replicating may

cause it became null for some
client.

bVisible

ProjectileRocket RocketMesh The mesh of the rocket.

OwningCharacter The player character who launched
the rocket.

ProjectileMovementCo
mponent

The component responsible for the
rocket's movement, replicate to

make the actor move smoothly with
the same trail.

InvulnerabilityPo
tion

HologramMaterialInsta
nce

The material instance controlling
the appearance of the

invulnerability potion's holographic
effect.

ItemComponent OwningCharacter The player character who collected
the item.

MovingBarrier Mesh The mesh of the barrier.

bIsBlocking A Boolean indicating whether the
barrier is currently blocking (or

trying to block) player movement,
replicate to make sure the barrier is

at the same state for all clients.

PressurePlate MatInterface The material instance of the
material interface.

MatInstance The material interface of the
material.

ColorableBlock TeamNumber The team number of the team that
represented by the current dyed

Technical Design Document for BlockoutShooter Jiangye Song

 Page 15 of 43

color. Initially -1 represented the
block is uncolored.

BlockMesh The mesh of the block.

MatInstance The material instance of the
material interface.

MatInterface The material interface of the
material.

PowerUp PowerUpMesh The mush mesh of the power up.

CylinderMesh Lower part of the mush mesh.

Hitbox The collision hitbox of the power
up.

MatInstance The material instance of the
material interface.

MatInterface The material interface of the
material.

HealthBoost The amount of the health boost that
will be applied to the player when
the player is taking this power up.

Heal The amount of the instant heal that
will be applied to the player when
the player is taking this power up.

Strength The amount of the strength that will
be applied to the player when the

player is taking this power up.

Multiplier The amount of the multiplier that
will be applied to the player when
the player is taking this power up.

Type The type of the power up.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 16 of 43

Remote Procedure Calls
Class Name Function Type Description

ClubComponent /
BlasterExplosion /

Firework /
ProjectileRocket

ServerBonk /
ServerExplode

Server,
Reliable

Complete the
action on the server

to make the
damage result is
synchronized, as
well as the net

multicast functions
inside it.

RocketLauncherC
omponent /

FireworkLauncher
Component

ServerSpawnFirework /
ServerSpawnRocket

Server,
Reliable

Complete the
action on the server
to make the actors
created across all

nodes.

ClubComponent /
Firework /

ProjectileRocket

SpawnSplatEffect NetMulti
cast,Relia

ble

Play the splat effect
on all client and

server sides.

ColorableBlock UpdateTeamNumber(int) Server,
Reliable

Update the team
number of the

team that
represented by the
current dyed color.

BlockoutCharacte
r

DropPowerUp(FVector&,
FRotator&)

Server,
Reliable

Create a power up
on the specified

location with
specified rotation

on the map.

UpdateDrowningStatus(int
)

Server,
Reliable

Update the status
of the drowning

status of the
current player.

DeathParticles NetMulti
cast,

Server,
Reliable

Play the Death
particle effect on all

nodes.

ServerFireWeapon Server,
Reliable

Use weapon on the
server to make it

synchronized.

ServerDetachWeapon Server,
Reliable

Remove weapon
the action on the

server to make sure
the weapon

destroyed on all
nodes.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 17 of 43

ServerSpawnExplosion Server,
Reliable

Spawn explosion
caused by the
blaster or dye

particles when they
collided with
something.

ServerDisableInvulnerabilit
y

Server,
Reliable

Disable the
invulnerability of a
player character.

UpdatePPEComMat /
UpdatePPEInstComMat

Client,
Reliable

Update the post
process effect for

client’s follow
camera’s ppe
component

according to their
character status,

must not
synchronized.

UpdateMaterials NetMulti
cast,

Reliable

Change/reset the
player material,

need to have the
same material for
all players to see

PowerUp SetupPowerUp(float,float,f
loat,int)

Server,
Reliable,
Multicast

Setup the mesh
attachment and

save the values of
its properties.

GeneratePowerUp Server,
Reliable

Randomly select
the type of the

power up.

Tree DropPowerUp(FVector&,
FRotator&)

Server,
Reliable

Create a power up
on the specified

location with
specified rotation

on the map.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 18 of 43

Physics Constraint 1 - Lever
A Lever to control the wrecking ball.

Overview of Interaction
The lever is a physical object within the game world that serves the purpose of

introducing dynamic, and its interaction is based on physics constraints and the tick

function. Upon activation, the wrecking ball will start swinging back and forth due to

physics. The swinging motion of the wrecking ball can be observed visually in the

game environment. It is designed to hit and break the wall on the edge of the map.

Interaction Description

How the Interaction Works
The wrecking ball does not have gravity at the start so it cannot swing. When the

lever is pulled by a player, the tick function detects the angle and enables the gravity

of the wrecking ball that is selected in the detailed panel. The swinging wrecking ball

collided with the wall on the edge of the map, exerting a force on it and started to

collapse.

Inspiration / Reference Images
The inspiration for the lever and wrecking ball physics interaction in Blockout

Shooter is from the game Human: Fall Flat. This game is known for its physics-based

puzzles, reveal the fun for unpredictable outcomes from interactions.

(Retrieved from: https://www.youtube.com/watch?v=_4EhMRdT1XI)

https://www.youtube.com/watch?v=_4EhMRdT1XI

Technical Design Document for BlockoutShooter Jiangye Song

 Page 19 of 43

In-Engine Screenshots

The player broke the wall by activating the wrecking ball on the corner of the map by

pushing the lever.

Properties and Values
Property Description of Purpose Value

Angular Limit The limit on amount of
rotation that can be
applied as part of lever.

30 Degrees

Limit Stiffness The bounce force of the
lever when a limit is
exceeded.

50

Angular Motor Target
Orientation

The rotation the lever
tries to rotate to (in this
game, the original
orientation).

FRotator(0,0,0)

Angular Motor Target
Orientation strength

The strength at which the
lever tries to rotate to a
rotation

50

Diagram of Interaction

Physics Constraint 2 - Tree
A Tree that provides powerups.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 20 of 43

Overview of Interaction
The Tree actor introduces a strategic gameplay element into Blockout Shooter,

emphasizing player decisions and risk management. While it does add dynamism to

the game environment, its primary purpose is to create opportunities for strategic

gameplay. Players can push the Tree to earn power-ups from them, but this action

might also expose them to attacks from the opponent. Moreover, the thrust force

generated by the Tree actor can push the player outside the arena, resulting in their

elimination, adding a layer of risk to the interaction.

Interaction Description

How the Interaction Works
As the tree does not have a physical collision, a tree root mesh is added and shows

as a cube in the engine but will not be visible in the game. When player is trying to

push the tree, it is actually pushing the cube (tree root) which also drives the tree to

rotate the destination rotation.

Tracking by the tick function, when the Tree actor is pushed, it responds by bouncing

back. The extent and direction of this bounce are determined by the magnitude and

direction of the force applied by the player. The vector is calculated by vector

subtraction, but the z-axis force will force set to 500. The tick function will also

create a random power-up near the tree.

To prevent player from being thrust to an extremely high or far place, the velocity is

limited in BlockoutShooterCharacter tick function by 1000.

Inspiration / Reference Images
None.

In-Engine Screenshots

The player is thrust out from arena when pushing the trees.

Properties and Values
Property Description of Purpose Value

Angular Limit The limit on amount of
rotation that can be
applied as part of lever.

30 Degrees

Technical Design Document for BlockoutShooter Jiangye Song

 Page 21 of 43

Angular Motor Target
Orientation

The rotation the tree tries
to rotate to (in this game,
the original orientation).

FRotator(0,0,0)

Angular Motor Target
Orientation Strength

The strength at which the
tree tries to rotate to the
rotation.

100

Angular Motor Target
Velocity

The target angular
velocity for the motor.

FVector(0)

Angular Motor Target
Velocity Strength

The strength to reach the
target angular velocity.

5

Diagram of Interaction

Physics Constraint 3 - PressurePlate
Overview of Interaction
The PressurePlate is a dynamic element within the Blockout Shooter game, designed

to introduce interactivity, strategy and change the game environment. Its primary

function is to influence the state of "MovingBarrier" objects in the game world. Upon

activation, it initiates a cascading effect by altering the "bIsBlocking" Boolean

attribute of the associated MovingBarriers. This interaction leads to changes in the

position and behavior of these barriers, dynamically affecting player movement and

strategy.

Interaction Description

How the Interaction Works
The operation of the PressurePlate interaction is based on a sequence of events.

When a player or object (like wall / box fragments) step on/hit with the

PressurePlate, it activates a trigger event. The PressurePlate then change the

"bIsBlocking" Boolean attribute of the associated MovingBarriers. This attribute

determines whether the barriers are actively blocking player movement or hidden

beneath the ground.

Inspiration / Reference Images
The inspiration for the PressurePlate interaction in Blockout Shooter comes from the

game Superliminal. In Superliminal, players often encounter pressure plates as

mechanisms for opening doors and progressing through the game world. These

Technical Design Document for BlockoutShooter Jiangye Song

 Page 22 of 43

pressure plates require players to step on / place objects on them to trigger their

effects.

(Retrieved from: my own recordings)

In-Engine Screenshots

The player stepped on the pressure plate to lower the moving barrier.

Properties and Values
Property Description of Purpose Value

Linear Limit Z Motion
Limit

The limit on amount of
displacement that can be
applied as part of lever.

5 cm

Linear Motor Position
Target

The bounce force of the
lever when a limit is
exceeded.

FVector(0,0,0)

Linear Motor Position
Target strength

The strength at which the
lever tries to rotate to a
rotation (in this game, the
original position).

50

Diagram of Interaction

Technical Design Document for BlockoutShooter Jiangye Song

 Page 23 of 43

Advanced Niagara Particle Effect
Niagara Particle Effect - NS_Mush
NS_Mush is the power-up picking effect in BlockoutShooter.

Overview of Effect
The NS_Mush Niagara particle effect is designed to enhance the visual aspects of

power-up mushroom pickups within the game. This effect provides a captivating

visual representation of the power-up acquisition. It communicates to players that

they have collected a power-up and accentuates the significance of this in-game

action.

Effect Description
At the center of the effect, the SingleLoopingParticle emitter represents the location

where the power-up mushroom was collected. This emitter features particles that

dynamically grow (0-0.2 seconds) and shrink (0.3-0.5 seconds) in size, mimicking the

pulsating effect of a power-up. The color of these particles matches that of the

power-up mushroom, creating a visual connection between the effect and the

collected item.

A mesh burst emitter complements the central effect by creating a burst of mesh

particles that resemble the contour of a diamond. These mesh particles share the

color of the power-up mushroom and rotate gracefully. As time progresses, these

particles confluence back toward the center eventually, aligning with the shrinking

effect of the SingleLoopingParticle emitter.

There are two BlowingParticles emitters operating simultaneously to add an extra

layer of visual excitement. One emits confetti in random colors, adding a vibrant and

dynamic aspect to the effect. The other emitter blows confetti in a color that

matches the power-up mushroom's color, reinforcing the thematic connection

between the effect and the collected power-up.

In addition to the previously described elements, the SingleLoopingParticle and the

mesh burst emitters now include a point attraction force. This position is set as a

parameter "Dest," represents a potential location where the player might be

situated at that moment. As the effect progresses, the attraction force gradually

increases from zero, pulling towards the specified "Dest" location.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 24 of 43

Inspiration / Reference Images:

In-Engine Screenshots:

The player claimed a yellow mush.

Properties and Values

Emitter Property Description
of Purpose

Value

SingleLoopingParticl
e

Scale Sprite
Size

Controls the
size of the

sprites.

Scale Factor:

Point
Attraction

Force

Control the
strength and
location of

the
attraction

force.

Strength:

Position: Dest
(Parameter)

ConfettiBurst Shape
Location
[Sphere]

Controls the
location of

the meshes.

Radius: 12.0f

Add Velocity
[From Point]

Controls the
strength of
force of the

burst.

Velocity Speed: 1000.0f

Scale Mesh
Size

Controls the
size of the
meshes.

Scale Factor: Ramp Up
Down Curve

Aerodynamic
Drag

Controls the
rotation of

the meshes.

Aerodynamic Drag:
Random Range Float 0.4-

1.2

Point
Attraction

Force

Control the
strength and
location of

the
attraction

force.

Strength:

Position: Dest
(Parameter)

BlowingParticles Wind Force Applies a
wind speed

to the
particles

Random Range Vector (-
500,-500,0)-

(500,500,1000)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 25 of 43

Scale Sprite
Size

Controls the
size of the

sprites.

Scale Factor:

Niagara System / Emitters Breakdown

Technical Design Document for BlockoutShooter Jiangye Song

 Page 26 of 43

C++ Parameters Breakdown
Provide detailed information on the C++ exposed parameters used for creation of

the particle system.

Parameter Description

Color The color of the mush mesh of the
power up that is taken. Used as color of
confetti, particle, and mesh.

Dest The potential location of the player
after 0.4 seconds. Used for point
attraction force Vector.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 27 of 43

Destruction Aware Niagara Particle Effect
Niagara Particle Effect – NS_TrailingPiece
NS_TrailingPiece is a fire trailing effect.

Overview of Effect
The NS_TrailingPiece Niagara particle effect enhances the visual impact of fragile

actors’ destruction within Blockout Shooter. This effect responds to the collapse of

fragile actors (glass wall / fragile obstacles), creating a more chaotic view. Its purpose

is to intensify the sense of chaos of destruction, which attracts the player to break

them more, enhancing the overall gameplay experience.

Effect Description
The NS_TrailingPiece effect listens for Chaos destruction data triggered from the

world. When a fragment is marked for destruction, the NS_TrailingPiece effect

generates 5 additional fragments behind the fragments from the fragile actors. It

applies itself a velocity (from point) to make each fragments moves more randomly.

Inspiration / Reference Images:

The NS_TrailingPiece Niagara particle effect is commonly seen in games, movies, and

the reality when structures crumble or explode.

In-Engine Screenshots:

The player broke the wall using a staff.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 28 of 43

Properties and Values

Property Description of Purpose Value

Spawn from Chaos Spawn particles based on
event data from a chaos
solver.

Parameter in Chaos
Destruction Data
Spawn Percentage
Fraction: 5.0

Apply Chaos Data Set position, velocity, and
color from a chaos solver.

Parameter in Chaos
Destruction Data

Add Velocity [From Point] Controls the initial
velocity of the mesh.

Velocity Speed: 25.0f

Drag Air resistance. Drag: 1.0f

Mesh Rotation Force Controls the rotation
force of the meshes.

Rotation: (-10,-10,-10)-
(10,10,10)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 29 of 43

Collision Enabled Niagara Particle Effect
Niagara Particle Effect – NS_Bathtub

Overview of Effect
The NS_Bathtub Niagara is an essential particle effect to enhancing the core

gameplay experience in Blockout Shooter. Its primary function is to dye the colorable

blocks with a more dynamic and visually engaging approach. When players use their

weapons, the bubbles in NS_Bathtub effect will start to splat, creating a visually

captivating spectacle. The bouncing bubbles enhanced the gameplay experience by

providing dynamic visual feedback which attracts player characters to dye more

colorable blocks on the map.

Effect Description
When a player uses their weapon, the NS_Bathtub effect is triggered. It generates a

burst of bubbles from a specific center point of an object. The bubbles within the

effect are collision-enabled, meaning they interact with the actors in the map. When

these bubbles hit the ground, wall, or any surface, they bounce off. When they

overlap with colorable blocks, they will create shape collisions to dynamically change

the color of the blocks to match the player's team color. This innovative approach

turns the NS_Bathtub effect into a critical gameplay element, and added more

strategies for the player (for example, the player can shoot a wall to create bubbles

to dye the blocks that near their opponent).

Inspiration / Reference Images:

The inspiration for the NS_Bathtub effect from Blockout Shooter is from the weapon

bathtub in Splatoon. Where players can splat bubbles out to color the arena. Using

similar effects aiming to capture the same level of visual appeal and makes more

sense for the main topic of Blockout Shooter (which is coloring the blocks) the same

time.

(Retrieved from: my own recordings)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 30 of 43

In-Engine Screenshots:

The dye effect appears when a player uses their club.

Properties and Values

Property Description of Purpose Value

Add velocity [in cone] Add a velocity to the
mesh in cone.

Velocity Speed: 300.0f

Collusion Cast rays to calculate its
collusion in the world.

Bounce: 1.2

C++ Interaction Description
The NS_Bathtub effect is equipped with a collision module, enabling the bubbles it

generates to interact with objects in the game world. It also holds a reference to the

player character who spawned it through the "ClassToTell" object parameter. This

reference establishes a connection between the particle effect and the player

character. The "Export Particle Data to Blueprint" module is set to export data under

the condition of a collision event, ensuring that relevant information is passed to the

Blueprint only if particle collided. The Callback Handler Parameter for the

NS_Bathtub effect is set as "ClassToTell" object, which is the player character who

spawned this effect.

The player character class in Blockout Shooter is a child class of

"INiagaraParticleCallbackHandler." This means that it has the ability to receive

particle data from the NS_Bathtub effect. When any particles from any effect collide

with any object, the player character's "ReceiveParticleData_Implementation"

function is triggered. Inside this function, for each particle collision event, the player

character generates a small FCollisionShape sphere with a radius of 10 cm. This

sphere is positioned at the location of the bubble particle's collision. If the sphere

collides with a colorable block in the game world, the player character calls the

"UpdateTeamNumber" function for that specific block.

This comprehensive process ensures that the NS_Bathtub effect, the player

character, and the game environment are seamlessly interconnected. It allows for

dynamic interactions and strategic color control within the Blockout Shooter game,

enhancing the gameplay experience.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 31 of 43

Shader Effects

Shader Effect 1 – M_Bubble

Overview of Effect
The M_Bubble shader effect is a visually charming material in Blockout Shooter.

When a player character obtains an invulnerability potion, the M_Bubble material

will apply on their appearance, creating a unique, hologram-like aesthetic. This effect

impacts gameplay by signifying the player's enhanced state, making it easier for both

the player and the opponent to identify invulnerable characters during intense

battles.

Effect Description
The M_Bubble shader material seems like an air bladder at first glance, featuring a

transparent and reflective surface. This material is designed to convey the player

character's invulnerable status.

M_Bubble is designed to reflect two distinct colours. The central portion of the

material reflects a base colour, while the outer edges reflect a secondary colour.

Both colours are dynamically controlled by parameters, ensuring that they align with

the player character's team affiliation. In C++ code of BlockoutShootherCharacter,

the base colour parameter of the M_Bubble material is set to match the player's

team colour, providing a clear visual representation of their alliance. The secondary

colour parameter, on the other hand, is derived from the reverse colour of the

player's team.

Inspiration / Reference Images:

Such transparent material is widely used across games when characters in game are

invincible, invisible, have special vision, etc. For example, in Hogwarts Legacy, the

character turns transparent when using Disillusionment spell.

(Retrieved from: my own recordings)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 32 of 43

In-Engine Screenshots:

The blue team player claimed a potion and is invulnerable now.

Properties and Values

Property Description of Purpose Value

Color 1 Used to control the edge color of shader
dynamically

Float4 (0,0,1,0)

Color 2 Used to control the base color of shader
dynamically

Float4 (1,0,0,0)

Color 1 Bright Used to control the brightness of the
edge color of shader dynamically

Float (1.8)

Color 2 Bright Used to control the brightness of the
base color of shader dynamically

Float (1.8)

Opacity Addition overall opacity for the shader Float (0.4)

Divide Used to control the alpha portion of the
base color

Float (0.06)

Contrast Used to control the contrast of the base
color

Float (1.6)

Node Graph

Technical Design Document for BlockoutShooter Jiangye Song

 Page 33 of 43

Shader Effect 2 - M_Plate

Overview of Effect
The M_Plate shader effect is mainly designed for pressure plates within the

gameplay environment. When a pressure plate is activated, the M_Plate material

will be light up. It serves as an indicator, both visually and functionally, by conveying

whether the pressure plate is active or not. This effect aids players in understanding

the status of pressure plates.

Effect Description
M_Plate has a colour parameter that determines the material's main colour hue.

This parameter enables customization of the material's colour to different

components (not in current stage of development). There's another parameter

named 'z' represents the object or component's location on the Z-axis. The M_Plate

material responds to changes in this parameter by dynamically adjusting its

brightness. When the 'z' value is lower, indicating that the pressure plate is pressed

or activated, the material becomes brighter. This visual change makes it clear to

players that the pressure plate is currently in use. Conversely, when the pressure

plate is released, allowing the 'z' value to gradually increase back, the material

smoothly transitions back to its normal colour. This visual feedback conveys the

status of the pressure plate, adding a dynamic element to the game environment.

Inspiration / Reference Images:

Pressure plate with colour changing is common in video games. Take Mario 3D world

as example, Mario used the rock monster to activate the plate. Use such material

will make player understand that the component is "push-able".

(Retrieved from: https://www.youtube.com/watch?v=hOB8bYcV1ik)

In-Engine Screenshots:

The plate has different brightness in different states.

https://www.youtube.com/watch?v=hOB8bYcV1ik

Technical Design Document for BlockoutShooter Jiangye Song

 Page 34 of 43

Properties and Values

Property Description of Purpose Value

Color Used to control colour of shader
dynamically

Float4 (0.45, 0.12, 0.75, 1)

Z Used to pass the z component location
of the actor

Float (15.0)

ZUpper Used to pass the maximum reachable z
component location

Float (15.0)

ZLower Used to pass the minimum reachable z
component location

Float (5.0)

Node Graph

Technical Design Document for BlockoutShooter Jiangye Song

 Page 35 of 43

Post Processing Effects
Local Post Processing Effect – MP_Death
Overview of Effect
The MP_Death post-processing effect in Blockout Shooter will activate when a

player's followed camera hits the PostProcessVolume5 on the bottom of the map.

This effect can also be triggered when a player character dies, as it's controlled by a

PostProcessComponent in C++. The primary purpose of this effect is to convey the

player's "death" or defeat within the game environment.

Effect Description
The effect desaturates the screen, which emphasizes the dark and defeated mood

following the character death. However, the colorable blocks on the player's screen

remain unaffected. This intentional design choice ensures that the status of

colorable blocks remains clearly visible to players during their respawn time, which

allows players to strategize and make informed decisions. A diamond-shaped

gradient is superimposed onto the screen, creating a vignette effect that darkens the

edges of the viewport. This serves to darken the screen further.

Additionally, The MP_Death effect includes an old-TV effect, achieved by using the

"MF_HologramBand" material function. This component adds a touch of distortion

and vintage aesthetics to the screen.

Inspiration / Reference Images:
The inspiration for the MP_Death post-processing effect is drawn from the failure

screen in Grand Theft Auto V. It contains a desaturated look with a focus on the

central of the screen to highlight the player is "waste".

(Retrieved from: https://www.youtube.com/watch?v=KOeJAoSyVWA)

https://www.youtube.com/watch?v=KOeJAoSyVWA

Technical Design Document for BlockoutShooter Jiangye Song

 Page 36 of 43

In-Engine Screenshots:

The player fell out of the world.

Properties and Values

Property Description of Purpose Value
MF_HologramBand Generate continuous moving bands with

width and gap.
Speed: 100
Width: 0.8
Gap: 10

DiamondGradient Generate a diamond gradient on the
screen.

Falloff: 0.5

SceneTexture:PostP
rocessInput0

The player screen. PostProcessInput0

SceneTexture:Cust
omStencil

Render of actors on the screen that have
a value of 1 in custom stencil.

CustomStencil

Node Graph

Technical Design Document for BlockoutShooter Jiangye Song

 Page 37 of 43

Global Post Processing Effect

Overview of Effect
The MP_Danger post-processing effect in the game is crucial in enhancing the

player's sense of urgency and peril (as there's no health bar ui). It activates when a

player's character's hitpoints drop below 50%, providing constant feedback about

their fragile state. This effect is visible across the entire game environment,

providing constant feedback to the player about their in-game condition, cueing

player to get heal as soon as possible.

Effect Description
The MP_Danger effect remains active as long as the player character's hit points are

below 50%. Once activated, the player's screen is immersed in a striking purple hue.

This coloration serves as a strong visual cue to convey the player's precarious state.

It radiates from the edges of the screen and keep breathing (expanding and

contracting) over time, further reinforcing the notion of danger, and urging players

to take immediate action. This purple hue emphasizes the edges of the screen while

leaving the centre unaffected by the purple colour to prevent the player be

distracted too much.

Additionally, A subtle heat wave distortion continues to be present, creating a visual

illusion of rising temperature or stress. This effect adds to the overall sense of

urgency and vulnerability.

Once the character's hit points reached 50% or more (e.g., healed by green

mushroom), the effect dissipates, indicating the player is temporary out of danger.

Inspiration / Reference Images:

Danger effects are very common technique in video games which use extreme

colours on the edge of the screen to alert players that the characters are in danger.

Such effect is too common that even the driving navigation application Amap have

used it as well when the user is speeding!

(Retrieved from: also my own recordings)

Technical Design Document for BlockoutShooter Jiangye Song

 Page 38 of 43

In-Engine Screenshots:

The player character hit themselves which puts they in danger.

Properties and Values

Property Description of Purpose Value
Time The game time, which is a value that

constantly increases.
Time

SceneTexture:PostP
rocessInput0

The player screen. PostProcessInpu
t0

Texture Sample A picture that is randomly distributed in
color which can create effects that looks
like random.

T_Perlin_Noise_
M

DebugTimeSine A sine wave (sin(time)), can be used to
make things grow and shrink smoothly
and continuously.

Frequency: 0.4

Colour The colour that appear on the edge of
the screen.

Float4
(1,0,0.48,1)

Node Graph

Technical Design Document for BlockoutShooter Jiangye Song

 Page 39 of 43

Optimisation
Statistics Auditor Report

Analysis
The colorable blocks are the main component within the game. In order to fill the

ground with this actor to achieve the desire gameplay, I have used a total number of

252 planes in the game to create the colorable block actors for the ground. It is

fortunate that each plane mesh contains 2 Tris, resulting in a total of 504 Tris. Given

the low impact on performance, there seems to be no immediate need for

optimization at this stage.

However, the table reveals that the "SimplePivotPainterExample" mesh, which is

used as the "Tree" actor's mesh in the game, has a significant number of Tris (4080).

This might because that this mesh is dynamic. Since there are currently 8 trees on

the map to be rendered, the sum of Tris adds up to 32,640. This suggests that

optimizing or replacing the mesh for the trees might be very beneficial for

performance.

Additionally, the report identifies two instances of "SM_Rock" which serve as

decorations in the game world, with a combined sum of 2456 Tris. Given that these

rocks are primarily decorative and do not significantly impact gameplay, it may be

worthwhile to consider their removal to further optimize performance.

Solution
A potential solution is to find or create a less complex mesh for the trees while

retaining the desired visual quality, which would reduce the overall Tris count and

improve performance without sacrificing the visual of the game.

Since the decorative rocks do not play a critical role in gameplay, I will consider

removing them to reduce the Tris count and improve overall performance.

Another viable solution is to use the level streaming / seamless loading. The game

can unload these meshes when player is far away from them and load them only if

they are getting closer to them.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 40 of 43

GPU Profiler Report

The most time-consuming aspect identified in the GPU Profiler Report is the

"DiffuseIndirectAndAO", which takes for 3.10ms+1.87ms of GPU processing time,

followed by "PostProcessing" at 1.79ms+0.82ms and "LumenSceneLightning" at

1.33+1.22ms. These figures suggest that the game is currently relatively well-

optimized.

If further optimize performance is required, I can reduce the intensity or the numebr

of post-processing effects, which can potentially lower the GPU processing time;

however, post-processing plays a significant role in enhancing the game's visual

quality, this will decrease the quality of visual aspect in the game.

Shadow casting can be disabled, as shadows does not play a critical role in the

gameplay or visuals. By doing so, the processing required for dynamic shadows will

be omit, freeing up GPU resources.

Unreal Insights Report
Timing Sections Report
In this insight analysis, the specific scenario is a player character uses a rocket

launcher to interact with fragile obstacles twice and eventually suicides by using the

rocket launcher near a wall. These actions trigger various in-game events and

showcase performance metrics at different stages of gameplay.

The recorded insights highlight that the game's performance is not entirely stable,

with significant peaks at different points in the gameplay sequence. These peaks are

observed at the game's initiation, when the player character interacts with and

breaks the fragile obstacles, and finally, when the game ends. This indicates

potential areas where performance can be improved.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 41 of 43

Timings Section 1

When the player character performs a rocket launcher action, there are five
instances of SpawnActor, which 5ms in total. This is already efficient in current stage
of development. However, it's important to note that player may be able to increase
the number of rockets fired per shot after they collects blue mushrooms, the
performance might degrade.

To improve these values in the future, we should consider simplifying the structure
or mesh of the rocket. This optimization can help maintain stable performance even
when multiple rockets are being spawned simultaneously due to power-ups. Another
approach is to lower the upper limits of the multiplier attribute of the player, which
limit the number of rockets spawned. By doing so, we can ensure smooth gameplay
experiences for players, particularly when player take a lot of blue mushrooms. This
optimization will contribute to the overall stability which will enhancing the player
experience.

Technical Design Document for BlockoutShooter Jiangye Song

 Page 42 of 43

Timings Section 2

The timing report shows that a large number of GeometryCollectionComponent

instances (count: 78) are consuming a substantial amount of processing time,

approximately 18.1 milliseconds in total. The extensive computational demands are

primarily due to the need to calculate the movement and physics for numerous

fragments simultaneously.

A direct approach is to reconsider the placement of fragile obstacles in the game

world. Currently the obstacles are placing next to each other in order to completely

blocked the high platform. By not positioning them too close to each other, the

computational load required to calculate the physics and movement of numerous

fragments can reduce dramatically at once.

Alternatively, increasing the fragment size for the fragile obstacles geometry

collection can also be an effective solution. Fewer, larger fragments will require less

computational resources, enhancing performance and maintaining a smooth

gameplay experience.

